File: model-single-normal-cm.c.~2~

package info (click to toggle)
autoclass 3.3.6-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 9,596 kB
  • ctags: 995
  • sloc: ansic: 16,726; makefile: 115; csh: 111; sh: 98; cpp: 95
file content (429 lines) | stat: -rw-r--r-- 16,596 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "autoclass.h"
#include "minmax.h"
#include "globals.h"

/* SUPRESS CODECENTER WARNING MESSSAGES */

/* empty body for 'while' statement */
/*SUPPRESS 570*/
/* formal parameter '<---->' was not used */
/*SUPPRESS 761*/
/* automatic variable '<---->' was not used */
/*SUPPRESS 762*/
/* automatic variable '<---->' was set but not used */
/*SUPPRESS 765*/


void sn_cm_params_influence_fn( model_DS model, tparm_DS tparm, int term_index,int  n_att,
	float *v, float *class_mean, float *class_sigma, float *class_known_prob,
	float *global_mean, float *global_sigma, float *global_known_prob)
{
   struct sn_cm_param *param;
   tparm_DS *p;
   float class_variance, global_variance, v1, v2, v3;

   param = &(tparm->ptype.sn_cm);
   *class_mean = param->mean;
   *class_sigma = param->sigma;
   *class_known_prob = param->known_prob;
   class_variance = param->variance;
   p = model_global_tparms(model);
   *global_mean = p[term_index]->ptype.sn_cm.mean;
   *global_sigma = p[term_index]->ptype.sn_cm.sigma;
   *global_known_prob = p[term_index]->ptype.sn_cm.known_prob;
   global_variance = p[term_index]->ptype.sn_cm.variance;
   v1 = *class_known_prob * 
     (param->known_log_prob - p[term_index]->ptype.sn_cm.known_log_prob); 
   v2 = (1.0 - *class_known_prob) * 
     (param->unknown_log_prob - p[term_index]->ptype.sn_cm.unknown_log_prob); 
   v3 = *class_known_prob *  
        ((float) log ((double) (*global_sigma / *class_sigma)) + 
        (((square(*class_mean - *global_mean) +
        (class_variance - global_variance)) / 2.0) / global_variance));
   *v = v1 + v2 + v3;
}


/* BUILD_SN_CM_PRIORS
   30jul95 wmt: change log calls to safe_log to prevent "log: SING error"
   		error messages.

   Builds an SN-CM prior from the information in a fully instantiated att
   structure of the real type.
   */

static priors_DS build_sn_cm_priors( database_DS data_base, att_DS att)
{
   int n;
   float range, sigma_min, sigma_max;
   priors_DS priors;
   real_stats_DS statistics = att->r_statistics;/* Attribute range information */

   range = statistics->mx - statistics->mn;
   sigma_min = SN_CM_SIGMA_SAFETY_FACTOR * att->error;
                                        /* The max sigma for values in range. */
   sigma_max = max(sigma_min, range / 2.0);
   if (sigma_min == sigma_max) {
      if ( (n = att->warnings_and_errors->num_expander_errors ++) == 0)
	 att->warnings_and_errors->model_expander_errors =
	    (fxlstr *) malloc(sizeof(fxlstr));
      else 
	 att->warnings_and_errors->model_expander_errors =
	    (fxlstr *) realloc(att->warnings_and_errors->model_expander_errors,
			    (n+1) * sizeof(fxlstr));
      strcpy(att->warnings_and_errors->model_expander_errors[n],
	     "          single_normal_cm is faulty due to large error-to-range\n"
             "          ratio on sigma priors.\n");
   }
   priors = (priors_DS) malloc(sizeof(struct priors));
   priors->known_prior = (0.5 + statistics->count) / (1.0 + data_base->n_data);
   priors->sigma_min = sigma_min;
   priors->sigma_max = sigma_max;
   priors->mean_mean = statistics->mean;
   priors->mean_sigma =
      max((range / 2.0),
           (SN_CM_SIGMA_SAFETY_FACTOR /
                (float) sqrt( ABSOLUTE_MIN_CLASS_WT)) * sigma_min);
   priors->mean_var = square(priors->mean_sigma);
   priors->minus_log_log_sigmas_ratio =
     - (float) log( max( log( 1.0 / (1.0 - SINGLE_FLOAT_EPSILON)),
                        max( safe_log( (double) (priors->sigma_max / priors->sigma_min)),
                            LEAST_POSITIVE_SHORT_FLOAT)));
   priors->minus_log_mean_sigma = - (float) safe_log( (double) priors->mean_sigma);

   return(priors);
}


/* SINGLE_NORMAL_CM_MODEL_TERM_BUILDER

   21nov94 wmt: initialize all slots in tparm
   30jul95 wmt: change log calls to safe_log to prevent "log: SING error"
   		error messages.

   Funcalled from Expand-Model-Terms.  This constructs parameter, prior, and
   intermediate results structures appropriate to a single-normal likelihood
   term, and places them in the model.  Constructs corresponding log-likelihood
   and parameter update function elements and saves them on the model for later
   compilation. 
*/
void single_normal_cm_model_term_builder( model_DS model, term_DS term, int n_term)
{
   void ***att_trans_data;
   int n, n_att, n_att_trans_data;
   float log_att_delta, log_delta_div_root_2pi, error;
   att_DS att;
   database_DS data_base;
   priors_DS prior_set;
   tparm_DS tparm;
   struct sn_cm_param *sn;

   n_att = term->att_list[0];
   data_base = model->database;
   att = data_base->att_info[n_att];
   error = att->error;
   att_trans_data = (void ***) get("single_normal_cm", "att_trans_data");
   n_att_trans_data = ((int *) get("single_normal_cm", "n_att_trans_data"))[0];
   if (getf(att_trans_data, att->type, n_att_trans_data) == NULL)
     fprintf( stderr,
      "Attribute %d: \"%s\" not one of those allowed for single_normal_cm terms.\n",
      n_att, att->dscrp);
   if ( att->missing == FALSE) {
      if( (n = att->warnings_and_errors->num_expander_warnings ++) == 0)
	 att->warnings_and_errors->model_expander_warnings =
	    (fxlstr *) malloc(sizeof(fxlstr));
      else 
	 att->warnings_and_errors->model_expander_warnings =
            (fxlstr *) realloc(att->warnings_and_errors->model_expander_warnings,
			    (n+1) * sizeof(fxlstr));
      strcpy(att->warnings_and_errors->model_expander_warnings[n],
             "            using single_normal_cm model on att which has NO missing values\n");
   }
   if (term->n_atts != 1)
     fprintf( stderr,
      "Attribute %d: \"%s\":  attempting to use single_normal_cm model in a \n"
              "          non-singleton attribute set\n",
      n_att, att->dscrp);
   if (error <= 0.0)
      fprintf( stderr, "Attribute %d: \"%s\", attempting to use single_normal_cm model "
              "with non-positive error value %f.\n",
      n_att, att->dscrp, error);
   log_att_delta = (float) safe_log((double) error);
   log_delta_div_root_2pi = LN_1_DIV_ROOT_2PI + log_att_delta;

		                              /*  Allocate parameters struct. */
   term->tparm = tparm = (tparm_DS) malloc(sizeof(struct new_term_params));
   tparm->tppt=SN_CM;

   tparm->n_atts = term->n_atts;
   tparm->n_term = n_term;
   tparm->n_att = n_att;
   tparm->n_att_indices = tparm->n_datum = tparm->n_data = 0;
   tparm->wts = tparm->datum = tparm->att_indices = NULL;
   tparm->data = NULL;
   tparm->w_j = tparm->ranges = tparm->class_wt = 0.0;
   tparm->disc_scale = 0.0;
   tparm->wt_m = tparm->log_marginal = 0.0;

   tparm->log_delta = log_delta_div_root_2pi;
   tparm->log_att_delta = log_att_delta;
   tparm->log_pi = (float) (-1.0 * log( M_PI));

   sn = &(tparm->ptype.sn_cm);

   sn->known_wt = sn->known_prob = sn->known_log_prob = sn->unknown_log_prob = 0.0;
   sn->weighted_mean = sn->weighted_var = sn->mean = sn->sigma = 0.0;
   sn->log_sigma = sn->variance = sn->log_variance = sn->inv_variance = 0.0;
   sn->ll_min_diff = sn->skewness = sn->kurtosis = 0.0;
						    /* Allocate & SET priors. */
   prior_set = model->priors[n_term] = build_sn_cm_priors(data_base, att);

   sn->prior_mean_mean = prior_set->mean_mean;
   sn->prior_mean_var = prior_set->mean_var; 
   sn->prior_mean_sigma = prior_set->mean_sigma;
   sn->prior_sigmas_term = (-1.5 * (float) log( 2.0)) +
      prior_set->minus_log_log_sigmas_ratio +
      (-1.0 * (float) safe_log((double) prior_set->mean_sigma));

   sn->prior_sigma_min_2 = square(prior_set->sigma_min);
   sn->prior_sigma_max_2 = square(prior_set->sigma_max);
   sn->prior_known_prior = prior_set->known_prior;

   /*done above temp->parms->prior_sigma_min_2 = square(prior_set->sigma_min);*/
}


/* SINGLE_NORMAL_CM_LOG_LIKELIHOOD
   27nov94 wmt: use percent_equal for float tests
   20dec94 wmt: return type to double
   23dec94 wmt: check unknown values with FLOAT_UNKNOWN, rather than INT_UNKNOWN
   */
double single_normal_cm_log_likelihood( tparm_DS tparm)
{
  int n_att = tparm->n_att;
  struct sn_cm_param *sn = &(tparm->ptype.sn_cm);
  float log_delta = tparm->log_delta, *datum = tparm->datum, value, diff, temp;

  value = datum[n_att];
  if( percent_equal( (double) value, FLOAT_UNKNOWN, REL_ERROR))
    return(sn->unknown_log_prob);

  diff = sn->mean - value;
  if ((float) fabs((double) diff) <= sn->ll_min_diff)
    temp = 0.0;
  else 
    temp = square(diff) * sn->inv_variance;
  return (sn->known_log_prob + log_delta + (-0.5 * (temp + sn->log_variance)));
}


/* SINGLE_NORMAL_CM_UPDATE_L_APPROX
   20dec94 wmt: return type to double
   
   When called within the environment of Update-L-Approx-fn, this calculates
   the approximate log likelihood log-a<w_j.S_j/H_j.theta_j>_k of observing
   the weighted statistics given the class hypothesis and current parameters.
   */
double single_normal_cm_update_l_approx( tparm_DS tparm)
{
  struct sn_cm_param *sn=&(tparm->ptype.sn_cm);
  float w_j_known, log_delta = tparm->log_delta, diff, t1, t2;
  float w_j = tparm->w_j;

  w_j_known = sn->known_wt;
  diff = sn->weighted_mean - sn->mean;
  if (fabs((double) diff) <= sqrt( LEAST_POSITIVE_SINGLE_FLOAT))
    t1 = 0.0;
  else
    t1 = square( diff);
  t1 = -0.5 * w_j_known * ((sn->weighted_var + t1) / sn->variance);
  t2 = ((w_j - w_j_known) * sn->unknown_log_prob) +
    (w_j_known * sn->known_log_prob) +
      (w_j_known * (log_delta - (float) log((double) sn->sigma))) + t1;
  return (t2);
}


/* SINGLE_NORMAL_CM_UPDATE_M_APPROX
   20dec94 wmt: return type to double 
   29mar95 wmt: calculation to double

   When called within the environment of Update-M-Approx-fn, this calculates the
   approximate log marginal likelihood log-a<w_j.S_j/H_j>_k of observing the
   weighted statistics given the class hypothesis alone.  See
   Single-Normal-cn-Update-M-approx-term-caller.
   A LOG-LINEAR APPROXIMATION IS USED IN THE REGION WHERE
   0 <= w_j-known <= (* .75 *absolute-min-class-wt*)
   */
double single_normal_cm_update_m_approx( tparm_DS tparm)
{
  struct sn_cm_param *sn=&(tparm->ptype.sn_cm);
  float log_att_delta = tparm->log_att_delta;
  float prior_mean_mean = sn->prior_mean_mean;
  float prior_sigmas_term = sn->prior_sigmas_term, diff, t1, t2;
  float prior_mean_sigma = sn->prior_mean_sigma;
  float log_pi = tparm->log_pi, w_j = tparm->w_j, w_j_known, t_w_j_known;
  double temp;

  w_j_known = sn->known_wt;
  t_w_j_known = max(w_j_known, 0.75 * ABSOLUTE_MIN_CLASS_WT);
  diff = sn->weighted_mean - prior_mean_mean;
  if ((float) fabs((double) diff) <=
      (prior_mean_sigma *
       (float) sqrt( 2.0 * LEAST_POSITIVE_SINGLE_FLOAT)))
    t1 = 0.0;
  else t1 = -0.5 * square(diff / prior_mean_sigma);
  if (w_j_known == t_w_j_known)
    t2 = 1.0;
  else
    t2 = w_j_known / t_w_j_known;

  temp = (double) log_pi + (-1.0 * (log_gamma( (double) (w_j + 1.0), FALSE))) +
    log_gamma( (double) (0.5 + (w_j - t_w_j_known)), FALSE) +
      log_gamma( (double) (0.5 + t_w_j_known), FALSE) +
        log_gamma( (double) (0.5 * (t_w_j_known - 1.0)), FALSE) + (double) t1 +
	  (double) (t_w_j_known * log_att_delta) +
            (-0.5 * (double) t_w_j_known *
	     log( M_PI * (double) t_w_j_known)) +
               (-0.5 * (double) (t_w_j_known - 1.0) *
                log((double) max( LEAST_POSITIVE_SINGLE_FLOAT, sn->weighted_var))) +
                  prior_sigmas_term;
  return( ((double) t2) * temp);
}


/* SINGLE_NORMAL_CM_UPDATE_PARAMS
   27nov94 wmt: use percent_equal for float tests
   20dec94 wmt: return type to void

   When called within the environment of Update-Params-fn, this updates the
   param-set of a Single-Normal-cn term.  See
   Single-Normal-cn-Update-Params-term-caller.
   Revised 12Feb90 JCS
   Use of double precision for weighted calculations will triple the runtime. 
*/
void single_normal_cm_update_params( tparm_DS tparm, int known_parms_p)
{
  int n_att = tparm->n_att, n_data = tparm->n_data;
  struct sn_cm_param *sn_cm=&(tparm->ptype.sn_cm);
  float prior_sigma_min_2 = sn_cm->prior_sigma_min_2;
  float prior_sigma_max_2 = sn_cm->prior_sigma_max_2;
  float prior_mean_mean = sn_cm->prior_mean_mean;
  float prior_mean_var = sn_cm->prior_mean_var;
  float prior_known_prior = sn_cm->prior_known_prior;
  float **data = tparm->data, *wts = tparm->wts, prob_known, var_ratio;
  float class_wt = tparm->class_wt, class_wt_1;
  float ignore1, known, mean, variance, skewness, kurtosis;

  class_wt_1 = class_wt + 1;
  if (class_wt > 0.0) {         /* Zero class-wt implies null class */
    /* Update the class statistics from class-DS-wts & database */
    /* If not collect?, we proceed with the previous values. */
    if (tparm->collect == TRUE) {
      central_measures_x(data, n_data, n_att, wts, 
                         percent_equal( (double) sn_cm->mean, FLOAT_UNKNOWN,
                                       REL_ERROR) ?
                         (double) prior_mean_mean : (double) sn_cm->mean,
                         &ignore1, &known, &mean, &variance, &skewness, &kurtosis);
      if (known == 0.0) {
        sn_cm->known_wt = 0.0;
        sn_cm->weighted_mean = prior_mean_mean;
        sn_cm->weighted_var = prior_mean_var;
      }
      else {
        sn_cm->known_wt = known;
        /* commented fprintf(stderr, "Setting known_wt to known %f\n", known);*/
        sn_cm->weighted_mean = mean;
        sn_cm->weighted_var =
          max(prior_sigma_min_2, min(prior_sigma_max_2, variance));
        sn_cm->skewness = skewness;
        sn_cm->kurtosis = kurtosis;
      }
    }
  }
  else {
    sn_cm->known_wt = 0.0;
    sn_cm->weighted_mean = prior_mean_mean;
    sn_cm->weighted_var = prior_mean_var;
  }
  if (known_parms_p != TRUE) {
    prob_known = max(LEAST_POSITIVE_SINGLE_FLOAT,
                     (sn_cm->known_wt + prior_known_prior) / class_wt_1);
    sn_cm->known_prob = prob_known;
    sn_cm->known_log_prob = (float) log((double) prob_known);
    sn_cm->unknown_log_prob =
      (float) log((double) max( LEAST_POSITIVE_SINGLE_FLOAT,
                               1.0 - prob_known));
    var_ratio = sn_cm->weighted_var / (class_wt_1 * prior_mean_var);
    sn_cm->mean = (sn_cm->weighted_mean * (1.0 - var_ratio)) +
      (prior_mean_mean * var_ratio);
    sn_cm->variance = max(sn_cm->weighted_var * (class_wt / class_wt_1),
                          (float) sqrt( LEAST_POSITIVE_SINGLE_FLOAT));
    sn_cm->sigma = (float) sqrt((double) sn_cm->variance);
    sn_cm->log_variance = (float) log((double) sn_cm->variance);
    sn_cm->log_sigma = 0.5 * sn_cm->log_variance;
    sn_cm->inv_variance = 1.0 / sn_cm->variance;
    sn_cm->ll_min_diff =
      max((float) sqrt( LEAST_POSITIVE_SINGLE_FLOAT),
          (sn_cm->variance *
	   (float) sqrt( LEAST_POSITIVE_SINGLE_FLOAT)));
  }
  /* return(class_wt); */
}


/* When called within the environment of Class-Equivalence-fn, this tests for a
   difference of means less than sigma=ratio times MIN of sigmas. */

int single_normal_cm_class_equivalence( tparm_DS tparm1,tparm_DS tparm2, double sigma_ratio)
{
   struct sn_cm_param *sn1 = &(tparm1->ptype.sn_cm);
   struct sn_cm_param *sn2 = &(tparm2->ptype.sn_cm);

   if (fabs((double) (sn1->mean - sn2->mean)) <
       (sigma_ratio * (double) min(sn1->sigma, sn2->sigma)))
     return(TRUE);
   else
     return(FALSE);
}


/* SINGLE_NORMAL_CM_CLASS_MERGED_MARGINAL
   20dec94 wmt: return type to void

   When called within the environment of Class-Merged-Marginal-fn, this
   generates the sufficient statistics of Single-Normal-cn term equivalent
   to the weighted merging of params-0 and params-1, storing same in
   params-m. 
*/
void single_normal_cm_class_merged_marginal( tparm_DS tparm0,tparm_DS tparm1,tparm_DS tparmm)
{

   struct sn_cm_param *sn0=&(tparm0->ptype.sn_cm);
   struct sn_cm_param *sn1=&(tparm1->ptype.sn_cm);
   struct sn_cm_param *snm=&(tparmm->ptype.sn_cm);
   float prior_sigma_min_2 = sn0->prior_sigma_min_2;
   float kwt0, kwt1, kwtm;

   kwt0 = sn0->known_wt;     
   kwt1 = sn1->known_wt;     
   kwtm = kwt0 + kwt1;
   snm->known_wt = kwtm;
   fprintf(stderr, "Set known_wt to %f\n", kwtm);
   if (kwtm != 0.0) {
      snm->weighted_mean =
	 ((kwt0 * sn0->weighted_mean) + (kwt1 * sn1->weighted_mean)) / kwtm;
      snm->weighted_var =
	 max(prior_sigma_min_2,
	      (((kwt0 * (square(sn0->weighted_mean) + sn0->weighted_var)) +
	        (kwt1 * (square(sn1->weighted_mean) + sn1->weighted_var))) /
	       kwtm) -
	      square(snm->weighted_mean));
      /* return (snm->weighted_var);  **************/
   }
   /* else return (FLOAT_UNKNOWN); ****************** nil? */
}