1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
|
/*
$Id: main.cpp,v 1.109 2014/07/16 23:11:27 mp Exp $
AutoGrid
Copyright (C) 2009 The Scripps Research Institute. All rights reserved.
AutoGrid is a Trade Mark of The Scripps Research Institute.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <sys/param.h>
#include <unistd.h> /* long sysconf(int name) */
#include <sys/types.h>
#include <ctype.h> /* tolower */
#ifdef NOTNEEDED
#ifdef _WIN32
#include <Winsock2.h>
#include "util.h"
#endif
#endif
#include <math.h>
#include <assert.h>
#include <stdio.h>
#include <search.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#ifndef HAVE_SYSCONF
#include "mingw_sysconf.h" // for sysconf(_SC_CLK_TCK) and possibly gethostname
#endif
#include <stddef.h>
#include <ctype.h>
#include <cassert>
/* the BOINC API header file */
#ifdef BOINC
#include "diagnostics.h"
#include "boinc_api.h"
#include "filesys.h" // boinc_fopen(), etc... */
#endif
#include "autogrid.h"
#include "autoglobal.h"
#include "autocomm.h"
#include "constants.h"
#include "distdepdiel.h"
#include "read_parameter_library.h"
#include "timesys.h"
#include "timesyshms.h"
extern Real idct;
// round() is a C99 function and not universally available
// Required to round %.3f consistently on different platforms
#ifdef HAVE_ROUND
#define round3dp(x) ((round((x)*1000.0L))/1000.0L)
#else
#define round3dp(x) (( floor((x)*1000.0 + 0.5)) / 1000.0)
#endif
// print_error() is used with error_level where
// error_level is defined in autogrid.h
void print_error( FILE *fileptr, int error_level, char *message)
// print an error or informational message to a file-pointer or
// standard error
{
char output_message[LINE_LEN];
char *tag;
switch ( error_level ) {
case AG_ERROR:
case FATAL_ERROR:
tag = "ERROR";
break;
case WARNING:
tag = "WARNING";
break;
default:
case INFORMATION:
tag = "INFORMATION";
break;
case SUGGESTION:
tag = "SUGGESTION";
break;
}
(void) sprintf( output_message, "\n%s: %s: %s\n", programname, tag, message);
// Records all messages in the logFile.
(void) fprintf( logFile, "%s\n", output_message);
// Only send errors, fatal errors and warnings to standard error, stderr.
switch ( error_level ) {
case AG_ERROR:
case FATAL_ERROR:
case WARNING:
(void) fprintf( stderr, "%s\n", output_message);
break;
}
// If this is a fatal error, exit now.
if (error_level == FATAL_ERROR) {
(void) fprintf( logFile, "\n%s: Unsuccessful Completion.\n", programname);
exit( EXIT_FAILURE ); // POSIX, defined in stdlib.h (usually 1)
}
}
/* fopen rewrite to either use BOINC api or normal system call */
FILE *ad_fopen(const char *path, const char *mode, FILE *logFile)
{
FILE *filep;
#ifdef BOINC
int rc;
char resolved_name[512];
rc = boinc_resolve_filename(path, resolved_name, sizeof(resolved_name));
if (rc){
fprintf(stderr, "BOINC_ERROR: cannot open filename.%s\n",path);
boinc_finish(rc); /* back to BOINC core */
}
// Then open the file with boinc_fopen() not just fopen()
filep = boinc_fopen(resolved_name, mode);
#else
filep = fopen(path,mode);
#endif
return filep;
}
static int get_rec_index(const char key[]);
// to support use_vina_potential
static int get_map_index(const char key[]);
#define ET 0 //useful switch mp+rh 1 for "energy_table", 0 for "et"
int main( int argc, char **argv )
/******************************************************************************/
/* Name: main (executable's name is "autogrid"). */
/* Function: Calculation of interaction energy grids for Autodock. */
/* Directional H_bonds from Goodford: */
/* Distance dependent dielectric after Mehler and Solmajer. */
/* Charge-based desolvation */
/*Copyright (C) 2009 The Scripps Research Institute. All rights reserved. */
/* */
/* Authors: Garrett Matthew Morris, Ruth Huey, David S. Goodsell */
/* */
/* The Scripps Research Institute */
/* Department of Molecular Biology, MB5 */
/* 10550 North Torrey Pines Road */
/* La Jolla, CA 92037-1000. */
/* */
/* e-mail: garrett@scripps.edu */
/* rhuey@scripps.edu */
/* goodsell@scripps.edu */
/* */
/* Helpful suggestions and advice: */
/* Arthur J. Olson */
/* Bruce Duncan, Yng Chen, Michael Pique, Victoria Roberts */
/* Lindy Lindstrom */
/* */
/* Date: 07/07/04 */
/* */
/* Inputs: Control file, receptor PDBQT file, parameter file */
/* Returns: Atomic affinity, desolvation and electrostatic grid maps. */
/* Globals: NDIEL, MAX_MAPS */
/* increased from 8 to 16 6/4/2004 */
/* */
/* Modification Record */
/* Date Inits Comments */
/* 07/06/89 DSG FORTRAN implementation */
/* 07/05/92 GMM C translation */
/* 20/09/95 GMM/DSG AutoGrid3 */
/* 07/07/04 DSG/RH AutoGrid4 */
/******************************************************************************/
/* Note: 21/03/03 GMM note: ATOM_MAPS is no longer used here; was used for
* is_covalent and is_hbonder, but these are now folded into the MapObject
* and arrayed up to MAX_MAPS (currently). MAX_MAPS is always larger than
* ATOM_MAPS, so this is safe. */
{
/* use vina potential function instead of autodock4 potential function for grid calculations */
int use_vina_potential = FALSE;
/* for associative dictionary storing parameters by autogrid 'type' */
// FILE * dataFile;
// char dataline[100];
//ENTRY item;
/*see atom_parameter_manager.c */
static ParameterEntry thisparm;
ParameterEntry * found_parm;
char FN_parameter_library[MAX_CHARS]; // the AD4 parameters .dat file name
int parameter_library_found = 0;
/* LIGAND:
* maximum is MAX_MAPS */
/*each type is now at most two characters plus '\0'*/
/* currently ligand_atom_types is sparse...
* some types are not set*/
char ligand_types[MAX_MAPS][3];
/*array of ptrs used to parse input line*/
char * ligand_atom_types[MAX_MAPS];
/*malloc this after the number of receptor types is parsed*/
static EnergyTables et;
static double energy_lookup[NUM_RECEPTOR_TYPES][NEINT][MAX_MAPS]; // vdW and Hb only
typedef struct mapObject {
int atom_type; /*corresponds to receptor numbers????*/
int map_index;
int is_covalent;
int is_hbonder;
FILE *map_fileptr;
char map_filename[MAX_CHARS];
char type[3]; /*eg HD or OA or NA or N*/
double constant; /*this will become obsolete*/
double energy_max;
double energy_min;
double energy;
double vol_probe;
double solpar_probe;
/*new 6/28*/
double Rij;
double epsij;
hbond_type hbond; /*hbonding character: */
double Rij_hb;
double epsij_hb;
/*per receptor type parameters, ordered as in receptor_types*/
double cA[NUM_RECEPTOR_TYPES], cB[NUM_RECEPTOR_TYPES];/*coefficients if specified in gpf*/
double nbp_r[NUM_RECEPTOR_TYPES]; /*radius of energy-well minimum*/
double nbp_eps[NUM_RECEPTOR_TYPES];/*depth of energy-well minimum*/
int xA[NUM_RECEPTOR_TYPES]; /*generally 12*/
int xB[NUM_RECEPTOR_TYPES]; /*6 for non-hbonders 10 for h-bonders*/
int hbonder[NUM_RECEPTOR_TYPES];
} MapObject;
/*constant will go away*/
char * maptypeptr; /*ptr for current map->type*/
MapObject *gridmap = NULL; /* was statically assigned MapObject gridmap[MAX_MAPS]; */
/* needed to make regression tests work between platforms*/
Real *dummy_map;
/*variables for RECEPTOR:*/
/*each type is now at most two characters, eg 'NA\0'*/
/*NB: these are sparse arrays, some entries are not set */
char receptor_types[NUM_RECEPTOR_TYPES][3];
/* number of different receptor atom types declared on receptor_types line in GPF */
int receptor_types_gpf_ct = 0;
int has_receptor_types_in_gpf = 0;
/* number of different receptor atom types actually found in receptor PDBQT */
int receptor_types_ct = 0;
/* array of numbers of each type */
/*NB: this is a sparse int array, some entries are 0*/
int receptor_atom_type_count[NUM_RECEPTOR_TYPES];
/*array of ptrs used to parse input line*/
char * receptor_atom_types[NUM_RECEPTOR_TYPES];
/* AG_MAX_ATOMS */
/* changed these from "double" to "static" to reduce stack usage - MPique 2012 */
static double charge[AG_MAX_ATOMS];
static double vol[AG_MAX_ATOMS];
static double solpar[AG_MAX_ATOMS];
/*integers are simpler!*/
static int atom_type[AG_MAX_ATOMS];
static hbond_type hbond[AG_MAX_ATOMS];
static int disorder[AG_MAX_ATOMS];
static int rexp[AG_MAX_ATOMS];
static double coord[AG_MAX_ATOMS][XYZ];
static double rvector[AG_MAX_ATOMS][XYZ];
static double rvector2[AG_MAX_ATOMS][XYZ];
/*canned receptor atom type number*/
int hydrogen, carbon, arom_carbon, oxygen, nitrogen;
int nonHB_hydrogen, nonHB_nitrogen, sulphur, nonHB_sulphur;
// additional types for vina_potential
int chlorine, bromine, fluorine, iodine;
/*canned ligand atom type number for vina_potential*/
int map_hydrogen, map_carbon, map_arom_carbon, map_oxygen, map_nitrogen;
int map_nonHB_hydrogen, map_nonHB_nitrogen, map_sulphur, map_nonHB_sulphur;
int map_chlorine, map_bromine, map_fluorine, map_iodine;
/* XYZ */
double cross[XYZ];
double c[XYZ];
double cext[XYZ];
double cgridmax[XYZ];
double cgridmin[XYZ];
double cmax[XYZ];
double cmin[XYZ];
double csum[XYZ];
double cmean[XYZ]={0.,0.,0.};
double center[XYZ];
double covpos[XYZ]; /* Cartesian-coordinate of covalent affinity well. */
double d[XYZ];
double dc[XYZ];
int icoord[XYZ]; /* int icenter; */
int ne[XYZ];
int n1[XYZ];
int nelements[XYZ];
/* MAX_CHARS */
char AVS_fld_filename[MAX_CHARS];
char floating_grid_filename[MAX_CHARS];
char host_name[MAX_CHARS];
char receptor_filename[MAX_CHARS];
char xyz_filename[MAX_CHARS];
/* LINE_LEN */
char message[LINE_LEN];
char line[LINE_LEN];
char GPF_line[LINE_LEN];
int length = LINE_LEN;
/* NDIEL (old name MAX_DIST) for dielectric and desolvation interactions */
double epsilon[NDIEL];
/* NEINT - for vdW and Hb interactions */
double energy_smooth[NEINT];
int ctr;
char atom_name[6];
/*char extension[5];*/
/* char q_str[7]; */
char record[LINE_LEN];
char temp_char = ' ';
char token[LINE_LEN];
char warned = 'F';
static const char xyz[] = "xyz"; // used to print headings
static FILE *receptor_fileptr,
*AVS_fld_fileptr,
*xyz_fileptr,
*floating_grid_fileptr;
/*for NEW3 desolvation terms*/
double solpar_q = .01097; /*unweighted value restored 3:9:05 */
/*double solpar_q = 0.0013383; =.01097 * 0.122*/
Linear_FE_Model AD4; // set in setup_parameter_library and read_parameter_library
double q_tot = 0.0;
double diel, invdielcal=0.;//expected never used if uninitialized
double dxA;
double dxB;
double percentdone=0.0;
double PI_halved;
double q_max = -BIG, q_min = BIG;
double rA;
double rB; /* double e; */
double rcov = 0.0; /* Distance from current grid point to the covalent attachment point */
double ri, inv_rd, rd2, r; /* re, r2, rd, */
double r_min = BIG, inv_r, inv_rmax, racc, rdon, rsph, cos_theta, theta, tmp;
double r_smooth = 0.5; //NEW ON BY DEFAULT Feb2012
double rdot;
double Rij, epsij;
double spacing = 0.375; /* One quarter of a C-C bond length. */
double t0, ti;
double ln_half = 0.0;
double covhalfwidth = 1.0;
double covbarrier = 1000.0;
double cA, cB, tmpconst;
#ifndef PACKAGE_VERSION
static char * version_num = "4.2.2";
#else
static char * version_num = PACKAGE_VERSION;
#endif
/*are these necessary??*/
double temp_vol, temp_solpar;
double temp_hbond_enrg, hbondmin[MAX_MAPS], hbondmax[MAX_MAPS];
double rmin, Hramp=0; /*Used to cover case where vina potential is used;initialized here to quiet compiler warning*/
double factor=332.0L; /* Used to convert between calories and SI units */
/*int num_rec_types = 0;*/
float timeRemaining = 0.;
int num_maps = 0;
int num_atom_maps = -1;
int floating_grid = FALSE, dddiel = FALSE, disorder_h = FALSE;
int elecPE = 0;
int dsolvPE = 0;
/* int covmap; */
int from, to;
int fprintf_retval = 0;
int GPF_keyword = -1;
int indcom = 0;
int infld;
int nbond;
int nDone = 0;
int problem_wrt = FALSE;
int xA, xB;
int hbondflag[MAX_MAPS];
int outlev = -1;
#define INIT_NUM_GRID_PTS -1
int num_grid_points_per_map = INIT_NUM_GRID_PTS;
register int i = 0, ii = 0, j = 0, k = 0, indx_r = 0, i_smooth;
register int ia = 0, ib = 0, ic = 0, map_index = -1, iat = 0, i1 = 0, i2 = 0, i3 = 0;
register int closestH = 0;
static int num_receptor_atoms;
static long clktck = 0;
Clock job_start;
Clock job_end;
struct tms tms_job_start;
struct tms tms_job_end;
Clock grd_start;
Clock grd_end;
struct tms tms_grd_start;
struct tms tms_grd_end;
for (i=0; i<MAX_MAPS; i++) {
/* initialize to "" */
strcpy(ligand_types[i], "");
}
for (i=0; i<NUM_RECEPTOR_TYPES; i++) {
/* initialize to "" */
strcpy(receptor_types[i], "");
receptor_atom_type_count[i]=0;
}
#ifdef BOINC
int flags = 0;
int rc;
flags =
BOINC_DIAG_DUMPCALLSTACKENABLED |
BOINC_DIAG_HEAPCHECKENABLED |
BOINC_DIAG_REDIRECTSTDERR |
BOINC_DIAG_REDIRECTSTDOUT ;
boinc_init_diagnostics(flags);
#ifdef BOINCCOMPOUND
BOINC_OPTIONS options;
options.main_program = false;
options.check_heartbeat = false;// monitor does check heartbeat
options.handle_trickle_ups = false;
options.handle_trickle_downs = false;
options.handle_process_control = false;
options.send_status_msgs = true;// only the worker programs (i.e. model) sends status msgs
options.direct_process_action = true;// monitor handles suspend/quit, but app/model doesn't
// Initialization of Boinc
rc = boinc_init_options(options); //return 0 for success
if( rc ){
fprintf(stderr,"BOINC_ERROR: boinc_init_options() failed \n");
exit(rc);
}
#else
// All BOINC applications must initialize the BOINC interface:
rc = boinc_init();
if (rc){
fprintf(stderr, "BOINC_ERROR: boinc_init() failed.\n");
exit(rc);
}
#endif
#endif
/*
* Fetch clock ticks per second.
*/
if (clktck == 0) {
if ( (clktck = sysconf(_SC_CLK_TCK)) < 0) {
(void) fprintf( stderr, "\"sysconf(_SC_CLK_TCK)\" command failed in \"main.c\"\n");
(void) fprintf( logFile, "\"sysconf(_SC_CLK_TCK)\" command failed in \"main.c\"\n");
exit(EXIT_FAILURE);
} else {
idct = 1. / (float)clktck;
}
}
ln_half = (double) log(0.5);
/*
* Get the time at the start of the run...
*/
job_start = times( &tms_job_start);
/*
* Parse the command line...
*/
(void) setflags( argc, argv, version_num);
for (i = 0; i < XYZ; i++) {
icoord[i] = 0;
}
/* Initialize max and min coodinate bins */
for (i = 0; i < XYZ; i++) {
cmax[i] = -BIG;
cmin[i] = BIG;
csum[i] = 0.;
covpos[i] = 0.0;
}
PI_halved = PI/2.;
racc = 1.; /*to quiet compiler warnings*/
rdon = 1.; /*to quiet compiler warnings*/
/*
* Initialize int receptor_atom_type_count[] array to 0
*/
for (i=0; i<NUM_RECEPTOR_TYPES; i++) {
receptor_atom_type_count[i] = 0;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*
* Output the "AutoGrid" banner...
*/
banner( version_num);
(void) fprintf(logFile, " $Revision: 1.109 $\n");
(void) fprintf(logFile, "Compilation parameters: NUM_RECEPTOR_TYPES=%d NEINT=%d\n",
NUM_RECEPTOR_TYPES, NEINT);
(void) fprintf(logFile, " MAX_MAPS=%d NDIEL=%d MAX_ATOM_TYPES=%d\n",
MAX_MAPS, NDIEL, MAX_ATOM_TYPES);
fprintf(logFile, " energy_lookup table has %8ld entries of size %ld\n",
(long)(sizeof energy_lookup/sizeof ***energy_lookup), (long)(sizeof ***energy_lookup));
fprintf(logFile," e_vdW_Hb table has %8ld entries of size %ld\n",
(long)(sizeof et.e_vdW_Hb/sizeof ***et.e_vdW_Hb), (long)(sizeof ***et.e_vdW_Hb));
/*
* Print out MAX_MAPS - maximum number of maps allowed
*/
(void) fprintf(logFile, "Maximum number of maps that can be computed = %d (defined by MAX_MAPS in \"autocomm.h\").\n", MAX_MAPS);
/*
* Print the time and date when the file was created...
*/
(void) fprintf( logFile, "This file was created at:\t\t\t");
printdate( logFile, 1);
(void) strcpy(host_name, "unknown_host");
#ifdef HAVE_GETHOSTNAME
gethostname( host_name, sizeof host_name );
#endif
(void) fprintf( logFile, " using:\t\t\t\"%s\"\n", host_name);
(void) fprintf( logFile, "\n\n");
//______________________________________________________________________________
//
// Read in default parameters
//
setup_parameter_library(logFile, outlev, "default Unbound_Same_As_Bound", Unbound_Same_As_Bound, &AD4);
/******************************************************************************/
/* Read in the grid parameter file... */
while( fgets( GPF_line, LINE_LEN, GPF ) != NULL ) {
/******************************************************************************/
GPF_keyword = gpfparser( GPF_line);
/* This first "switch" figures out how to echo the current GPF line. */
switch( GPF_keyword ) {
case -1:
(void) fprintf( logFile, "GPF> %s", GPF_line);
print_error( logFile, WARNING, "Unrecognized keyword in grid parameter file.\n" );
continue; /* while fgets GPF_line... */
case GPF_NULL:
case GPF_COMMENT:
(void) fprintf( logFile, "GPF> %s", GPF_line);
(void) fflush( logFile);
break;
default:
(void) fprintf( logFile, "GPF> %s", GPF_line);
indcom = strindex( GPF_line, "#");
if (indcom != -1) {
GPF_line[ indcom ] = '\0'; /* Truncate str. at the comment */
}
(void) fflush( logFile);
break;
} /* first switch */
/******************************************************************************/
/* This second switch interprets the current GPF line. */
switch( GPF_keyword ) {
/******************************************************************************/
case GPF_NULL:
case GPF_COMMENT:
break;
/******************************************************************************/
case GPF_RECEPTOR:
/* read in the receptor filename */
(void) sscanf( GPF_line, "%*s %s", receptor_filename);
(void) fprintf( logFile, "\nReceptor Input File :\t%s\n\nReceptor Atom Type Assignments:\n\n", receptor_filename);
/* try to open receptor file */
if ( (receptor_fileptr = ad_fopen(receptor_filename, "r", logFile)) == NULL ) {
(void) sprintf( message, "can't find or open receptor PDBQT file \"%s\".\n", receptor_filename);
print_error( logFile, FATAL_ERROR, message );
}
/* start to read in the lines of the receptor file */
ia = 0;
while ( (fgets(line, length, receptor_fileptr)) != NULL ) {
(void) sscanf(line, "%6s", record);
if (equal(record, "ATOM", 4) || /* Amino Acid or DNA/RNA atoms */
equal(record, "HETA", 4) || /* Non-standard heteroatoms */
equal(record, "CHAR", 4)) { /* Partial Atomic Charge - not a PDB record */
(void) strncpy( atom_name, &line[12], 4);
/* atom_name is declared as an array of 6 characters,
* the PDB atom name is 4 characters (C indices 0, 1, 2 and 3)
* but let's ensure that the fifth character (C index 4)
* is a null character, which terminates the string. */
atom_name[4] = '\0';
/* Output the serial number of this atom... */
(void) fprintf( logFile, "Atom no. %2d, \"%s\"", ia + 1, atom_name);
(void) fflush( logFile);
/* Read in this receptor atom's coordinates,partial charges, and
* solvation parameters in PDBQS format... */
// TODO this is unsafe way to read a PDB ! MP 2012
(void) sscanf(&line[30], "%lf", &coord[ia][X]);
(void) sscanf(&line[38], "%lf", &coord[ia][Y]);
(void) sscanf(&line[46], "%lf", &coord[ia][Z]);
/* Output the coordinates of this atom... */
(void) fprintf( logFile, " at (%.3lf, %.3lf, %.3lf), ",
coord[ia][X], coord[ia][Y], coord[ia][Z]);
(void) fflush( logFile);
/*1:CHANGE HERE: need to set up vol and solpar*/
(void) sscanf(&line[70], "%lf", &charge[ia]);
//printf("new type is: %s\n", &line[77]);
(void) sscanf(&line[77], "%s", thisparm.autogrid_type);
found_parm = apm_find(thisparm.autogrid_type);
if ( found_parm != NULL ) {
//(void) fprintf ( logFile, "DEBUG: found_parm->rec_index = %d, ->xs_radius= %f", found_parm->rec_index, found_parm->xs_radius);
if ( found_parm->rec_index < 0 ) {
strcpy( receptor_types[ receptor_types_ct ], found_parm->autogrid_type );
found_parm->rec_index = receptor_types_ct++;
//(void) fprintf ( logFile, "DEBUG: found_parm->rec_index => %d", found_parm->rec_index );
}
atom_type[ia] = found_parm->rec_index;
solpar[ia] = found_parm->solpar;
vol[ia] = found_parm->vol;
hbond[ia] = found_parm->hbond; /*NON=0, DS,D1, AS, A1, A2*/
#ifdef DEBUG
printf("%d:key=%s, type=%d,solpar=%f,vol=%f\n",ia,thisparm.autogrid_type, atom_type[ia],solpar[ia],vol[ia]);
#endif
++receptor_atom_type_count[found_parm->rec_index];
} else {
char message[1000];
sprintf(message, "\n\nreceptor file contains unknown type: '%s'\nadd parameters for it to the parameter library first\n", thisparm.autogrid_type);
print_error(logFile, FATAL_ERROR, message);
}
/* if from pdbqs: convert cal/molA**3 to kcal/molA**3 */
/*solpar[ia] *= 0.001;*/
q_max = max(q_max, charge[ia]);
q_min = min(q_min, charge[ia]);
if (atom_name[0] == ' ') {
/* truncate the first character... */
atom_name[0] = atom_name[1];
atom_name[1] = atom_name[2];
atom_name[2] = atom_name[3];
atom_name[3] = '\0';
} else if (atom_name[0] == '0' ||
atom_name[0] == '1' ||
atom_name[0] == '2' ||
atom_name[0] == '3' ||
atom_name[0] == '4' ||
atom_name[0] == '5' ||
atom_name[0] == '6' ||
atom_name[0] == '7' ||
atom_name[0] == '8' ||
atom_name[0] == '9') {
if (atom_name[1] == 'H') {
/* Assume this is the 'mangled' name of a hydrogen atom,
* after the atom name has been changed from 'HD21' to '1HD2'
* for example.
*
* [0-9]H\(.\)\(.\)
* 0 1 2 3
* : : : :
* V V V V
* tmp 0 1 2
* tmp
* :
* V
* 0 1 2 3
* : : : :
* V V V V
* H\(.\)\(.\)[0-9]
*/
temp_char = atom_name[0];
atom_name[0] = atom_name[1];
atom_name[1] = atom_name[2];
atom_name[2] = atom_name[3];
atom_name[3] = temp_char;
}
}
/* Tell the user what you thought this atom was... */
(void) fprintf( logFile, " was assigned atom type \"%s\" (rec_index= %d, atom_type= %d).\n", found_parm->autogrid_type, found_parm->rec_index, atom_type[ia]);
(void) fflush( logFile);
/* Count the number of each atom type */
/*++receptor_atom_type_count[ atom_type[ia] ];*/
/* Keep track of the extents of the receptor */
for (i = 0; i < XYZ; i++) {
cmax[i] = max(cmax[i], coord[ia][i]);
cmin[i] = min(cmin[i], coord[ia][i]);
csum[i] += coord[ia][i];
}
/* Total up the partial charges as we go... */
q_tot += charge[ia];
/* Increment the atom counter */
ia++;
/* Check that there aren't too many atoms... */
if (ia > AG_MAX_ATOMS) {
(void) sprintf( message, "Too many atoms in receptor PDBQT file %s;", receptor_filename );
print_error( logFile, AG_ERROR, message );
(void) sprintf( message, "-- the maximum number of atoms, AG_MAX_ATOMS, allowed is %d.", AG_MAX_ATOMS );
print_error( logFile, AG_ERROR, message );
(void) sprintf( message, "Increase the value in the \"#define AG_MAX_ATOMS %d\" line", AG_MAX_ATOMS );
print_error( logFile, SUGGESTION, message );
print_error( logFile, SUGGESTION, "in the source file \"autogrid.h\", and re-compile AutoGrid." );
(void) fflush( logFile);
// FATAL_ERROR will cause AutoGrid to exit...
print_error( logFile, FATAL_ERROR, "Sorry, AutoGrid cannot continue.");
} /* endif */
} /* endif */
} /* endwhile */
/* Finished reading in the lines of the receptor file */
(void) fclose( receptor_fileptr);
if ( has_receptor_types_in_gpf == 1 ) {
// Check that the number of atom types found in the receptor PDBQT
// file match the number parsed in by the "receptor_types" command
// in the GPF; if they do not match, exit!
if ( receptor_types_ct != receptor_types_gpf_ct ) {
(void) sprintf( message, "The number of atom types found in the receptor PDBQT (%d) does not match the number specified by the \"receptor_types\" command (%d) in the GPF!\n\n", receptor_types_ct, receptor_types_gpf_ct );
print_error( logFile, FATAL_ERROR, message );
// FATAL_ERROR will cause AutoGrid to exit...
}
}
/* Update the total number of atoms in the receptor */
num_receptor_atoms = ia;
(void) fprintf( logFile, "\nMaximum partial atomic charge found = %+.3lf e\n", q_max);
(void) fprintf( logFile, "Minimum partial atomic charge found = %+.3lf e\n\n", q_min);
(void) fflush( logFile);
/* Check there are partial charges... */
if (q_max == 0. && q_min == 0.) {
(void) sprintf( message, "No partial atomic charges were found in the receptor PDBQT file %s!\n\n", receptor_filename );
print_error( logFile, FATAL_ERROR, message );
// FATAL_ERROR will cause AutoGrid to exit...
} /* if there are no charges EXIT*/
for (ia = 0; ia < num_receptor_atoms; ia++) {
rexp[ia] = 0;
}
(void) fprintf( logFile, "Atom\tAtom\tNumber of this Type\n");
(void) fprintf( logFile, "Type\t ID \t in Receptor\n");
(void) fprintf( logFile, "____\t____\t___________________\n");
(void) fflush( logFile);
/*2. CHANGE HERE: need to count number of each receptor_type*/
for (ia = 0; ia < receptor_types_ct; ia++) {
i = 0;
if(receptor_atom_type_count[ia]!=0){
(void) fprintf( logFile, " %d\t %s\t\t%6d\n", (ia), receptor_types[ia], receptor_atom_type_count[ia]);
i++;
};
}
(void) fprintf( logFile, "\nTotal number of atoms :\t\t%d atoms \n", num_receptor_atoms);
(void) fflush( logFile);
(void) fprintf( logFile, "Total charge :\t\t\t%.2lf e\n", q_tot);
(void) fflush( logFile);
(void) fprintf( logFile, "\n\nReceptor coordinates fit within the following volume:\n\n");
(void) fflush( logFile);
(void) fprintf( logFile, " _______(%.1lf, %.1lf, %.1lf)\n", cmax[X], cmax[Y], cmax[Z]);
(void) fprintf( logFile, " /| /|\n");
(void) fprintf( logFile, " / | / |\n");
(void) fprintf( logFile, " /______/ |\n");
(void) fprintf( logFile, " | |___|__| Midpoint = (%.1lf, %.1lf, %.1lf)\n", (cmax[X] + cmin[X])/2., (cmax[Y] + cmin[Y])/2., (cmax[Z] + cmin[Z])/2.);
(void) fprintf( logFile, " | / | /\n");
(void) fprintf( logFile, " | / | /\n");
(void) fprintf( logFile, " |/_____|/\n");
(void) fprintf( logFile, "(%.1lf, %.1lf, %.1lf) \n", cmin[X], cmin[Y], cmin[Z]);
(void) fprintf( logFile, "\nMaximum coordinates :\t\t(%.3lf, %.3lf, %.3lf)\n", cmax[X], cmax[Y], cmax[Z]);
(void) fprintf( logFile, "Minimum coordinates :\t\t(%.3lf, %.3lf, %.3lf)\n\n", cmin[X], cmin[Y], cmin[Z]);
(void) fprintf( logFile, "\n");
cmean[0] = csum[0] / (double)num_receptor_atoms;
cmean[1] = csum[1] / (double)num_receptor_atoms;
cmean[2] = csum[2] / (double)num_receptor_atoms;
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_GRIDFLD:
(void) sscanf( GPF_line, "%*s %s", AVS_fld_filename);
infld = strindex( AVS_fld_filename, ".fld");
if (infld == -1) {
print_error( logFile, FATAL_ERROR, "Grid data file needs the extension \".fld\" for AVS input\n\n" );
} else {
infld = strindex( AVS_fld_filename, "fld");
(void) strcpy(xyz_filename, AVS_fld_filename);
xyz_filename[infld] = 'x';
xyz_filename[infld + 1] = 'y';
xyz_filename[infld + 2] = 'z';
}
if ( (AVS_fld_fileptr = ad_fopen(AVS_fld_filename, "w", logFile)) == NULL ) {
(void) sprintf( message, "can't create grid dimensions data file %s\n", AVS_fld_filename);
print_error( logFile, FATAL_ERROR, message );
} else {
(void) fprintf( logFile, "\nCreating (AVS-readable) grid maps file : %s\n", AVS_fld_filename);
}
if ( (xyz_fileptr = ad_fopen(xyz_filename, "w", logFile)) == NULL ) {
(void) sprintf( message, "can't create grid extrema data file %s\n", xyz_filename);
print_error( logFile, FATAL_ERROR, message );
} else {
(void) fprintf( logFile, "\nCreating (AVS-readable) grid-coordinates extrema file : %s\n\n", xyz_filename);
}
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_NPTS:
(void) sscanf( GPF_line, "%*s %d %d %d", &nelements[X], &nelements[Y], &nelements[Z]);
for (i = 0; i < XYZ; i++) {
nelements[i] = check_size(nelements[i], xyz[i]);
ne[i] = nelements[i] / 2;
n1[i] = nelements[i] + 1;
}
(void) fprintf( logFile, "\n");
(void) fprintf( logFile, "Number of grid points in x-direction:\t%d\n", n1[X]);
(void) fprintf( logFile, "Number of grid points in y-direction:\t%d\n", n1[Y]);
(void) fprintf( logFile, "Number of grid points in z-direction:\t%d\n", n1[Z]);
(void) fprintf( logFile, "\n");
num_grid_points_per_map = n1[X] * n1[Y] * n1[Z];
percentdone = 100. / (double) n1[Z];
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_SPACING:
(void) sscanf( GPF_line, "%*s %lf", &spacing);
(void) fprintf( logFile, "Grid Spacing :\t\t\t%.3lf Angstrom\n", spacing);
(void) fprintf( logFile, "\n");
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_GRIDCENTER:
(void) sscanf( GPF_line, "%*s %s", token);
if (equal( token, "auto", 4)) {
for (i = 0; i < XYZ; i++) {
center[i] = cmean[i];
}
(void) fprintf( logFile, "Grid maps will be centered on the center of mass.\n");
(void) fprintf( logFile, "Coordinates of center of mass : (%.3lf, %.3lf, %.3lf)\n", center[X], center[Y], center[Z]);
} else {
(void) sscanf( GPF_line, "%*s %lf %lf %lf", ¢er[X], ¢er[Y], ¢er[Z]);
(void) fprintf( logFile, "\nGrid maps will be centered on user-defined coordinates:\n\n\t\t(%.3lf, %.3lf, %.3lf)\n", center[X], center[Y], center[Z]);
}
/* centering stuff... */
for (ia = 0; ia < num_receptor_atoms; ia++) {
for (i = 0; i < XYZ; i++) {
coord[ia][i] -= center[i]; /* transform to center of gridmaps */
}
}
for (i = 0; i < XYZ; i++) {
cext[i] = spacing * (double)ne[i];
cgridmax[i] = center[i] + cext[i];
cgridmin[i] = center[i] - cext[i];
}
(void) fprintf( logFile, "\nGrid maps will cover the following volume:\n\n");
(void) fprintf( logFile, " _______(%.1lf, %.1lf, %.1lf)\n", cgridmax[X], cgridmax[Y], cgridmax[Z]);
(void) fprintf( logFile, " /| /|\n");
(void) fprintf( logFile, " / | / |\n");
(void) fprintf( logFile, " /______/ |\n");
(void) fprintf( logFile, " | |___|__| Midpoint = (%.1lf, %.1lf, %.1lf)\n", center[X], center[Y], center[Z]);
(void) fprintf( logFile, " | / | /\n");
(void) fprintf( logFile, " | / | /\n");
(void) fprintf( logFile, " |/_____|/\n");
(void) fprintf( logFile, "(%.1lf, %.1lf, %.1lf) \n\n", cgridmin[X], cgridmin[Y], cgridmin[Z]);
for (i = 0; i < XYZ; i++) {
(void) fprintf( logFile, "Grid map %c-dimension :\t\t%.1lf Angstroms\n", xyz[i], 2.*cext[i]);
}
(void) fprintf( logFile, "\nMaximum coordinates :\t\t(%.3lf, %.3lf, %.3lf)\n", cgridmax[X], cgridmax[Y], cgridmax[Z]);
(void) fprintf( logFile, "Minimum coordinates :\t\t(%.3lf, %.3lf, %.3lf)\n\n", cgridmin[X], cgridmin[Y], cgridmin[Z]);
for (i = 0; i < XYZ; i++) {
(void) fprintf(xyz_fileptr, "%.3lf %.3lf\n", cgridmin[i], cgridmax[i]);
}
(void) fclose(xyz_fileptr);
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_LIGAND_TYPES:
// Read in the list of atom types in the ligand.
// GPF_line e.g.: "ligand_types N O A C HH NH"
num_atom_maps = parsetypes(GPF_line, ligand_atom_types, MAX_ATOM_TYPES);
for (i=0; i<num_atom_maps; i++) {
strcpy(ligand_types[i], ligand_atom_types[i]);
#ifdef DEBUG
(void) fprintf(logFile, "%d %s ->%s\n",i, ligand_atom_types[i], ligand_types[i]);
#endif
}
for(i=0; i<num_atom_maps; i++){
found_parm = apm_find(ligand_types[i]);
if (found_parm != NULL) {
found_parm->map_index = i;
#ifdef DEBUG
(void) fprintf(logFile, "found ligand type: %-6s%2d\n",
found_parm->autogrid_type,
found_parm->map_index );
#endif
}
else {
// return error here
char message[1000];
(void) sprintf( message, "unknown ligand atom type %s\nadd parameters for it to the parameter library first!\n", ligand_atom_types[i]);
print_error(logFile, FATAL_ERROR, message);
}
};
elecPE = num_atom_maps;
dsolvPE = elecPE + 1;
/* num_maps is the number of maps to be created:
* the number of ligand atom types, plus 1 for the electrostatic map plus 1 for the desolvation map.
* AutoDock can only read in MAX_MAPS maps, which must include
* the ligand atom maps and electrostatic map and the desolvation map*/
num_maps = num_atom_maps + 2;
/* Check to see if there is enough memory to store these map objects */
gridmap = (MapObject *)calloc(sizeof(MapObject), num_maps);
if ( use_vina_potential) num_maps = num_atom_maps;
if ( gridmap == NULL ) {
print_error( logFile, FATAL_ERROR, "Could not allocate memory to create the MapObject \"gridmap\".\n" );
}
// Initialize the gridmap MapObject
for (i=0; i<num_maps; i++) {
gridmap[i].atom_type = 0; /*corresponds to receptor numbers????*/
gridmap[i].map_index = 0;
gridmap[i].is_covalent = 0;
gridmap[i].is_hbonder = 0;
gridmap[i].map_fileptr = (FILE *)NULL;
strcpy(gridmap[i].map_filename, "");
strcpy(gridmap[i].type,""); /*eg HD or OA or NA or N*/
gridmap[i].constant = 0.0L; /*this will become obsolete*/
gridmap[i].energy_max = 0.0L;
gridmap[i].energy_min = 0.0L;
gridmap[i].energy = 0.0L;
gridmap[i].vol_probe = 0.0L;
gridmap[i].solpar_probe = 0.0L;
gridmap[i].Rij = 0.0L;
gridmap[i].epsij = 0.0L;
gridmap[i].hbond = NON; /*hbonding character: */
gridmap[i].Rij_hb = 0.0L;
gridmap[i].epsij_hb = 0.0L;
/*per gridmap[i].receptor type parameters, ordered as in receptor_types*/
for (j=0; j<NUM_RECEPTOR_TYPES; j++) {
gridmap[i].cA[j] =0; /*default is to automatically calculate from r,eps*/
gridmap[i].cB[j] =0; /*ditto*/
gridmap[i].nbp_r[j] = 0.0L; /*radius of energy-well minimum*/
gridmap[i].nbp_eps[j] = 0.0L;/*depth of energy-well minimum*/
gridmap[i].xA[j] =0; /*generally 12*/
gridmap[i].xB[j] =0; /*6 for non-hbonders 10 for h-bonders*/
gridmap[i].hbonder[j] =0;
} // j
} // i
/* Check to see if the number of grid points requested will be
* feasible; give warning if not enough memory. */
if (num_grid_points_per_map != INIT_NUM_GRID_PTS) {
dummy_map = (Real *)malloc(sizeof(Real) * (num_maps * num_grid_points_per_map));
if (!dummy_map) {
/* Too many maps requested */
(void) sprintf( message, "There will not be enough memory to store these grid maps in AutoDock; \ntry reducing the number of ligand atom types (you have %d including electrostatics) \nor reducing the size of the grid maps (you asked for %d x %d x %d grid points); \n or try running AutoDock on a machine with more RAM than this one.\n", num_maps, n1[X], n1[Y], n1[Z] );
print_error( logFile, WARNING, message );
} else {
/* free up this memory right away; we were just testing to
* see if we had enough when we try to run AutoDock */
free(dummy_map);
}
} else {
print_error( logFile, FATAL_ERROR, "You need to set the number of grid points using \"npts\" before setting the ligand atom types, using \"ligand_types\".\n" );
} /* ZZZZZZZZZZZZZZZZZ*/
if (!gridmap) {
(void) sprintf( message, "Too many ligand atom types; there is not enough memory to create these maps. Try using fewer atom types than %d.\n", num_atom_maps);
print_error( logFile, FATAL_ERROR, message);
}
for (i = 0; i < num_atom_maps; i++) {
gridmap[i].is_covalent = FALSE;
gridmap[i].is_hbonder = FALSE;
gridmap[i].map_index = i;
strcpy(gridmap[i].type, ligand_types[i]); /*eg HD or OA or NA or N*/
found_parm = apm_find(ligand_types[i]);
if (strcmp(ligand_types[i],"Z")==0){
fprintf(logFile, "Found covalent map atomtype\n");
gridmap[i].is_covalent = TRUE;}
gridmap[i].atom_type = found_parm->map_index;
gridmap[i].solpar_probe = found_parm->solpar;
gridmap[i].vol_probe = found_parm->vol;
gridmap[i].Rij = found_parm->Rij;
gridmap[i].epsij = found_parm->epsij;
gridmap[i].hbond = found_parm->hbond;
gridmap[i].Rij_hb = found_parm->Rij_hb;
gridmap[i].epsij_hb = found_parm->epsij_hb;
if (gridmap[i].hbond>0){ //enum: NON,DS,D1,AS,A1,A2
gridmap[i].is_hbonder=TRUE;}
#ifdef DEBUG
(void) fprintf(logFile, " setting ij parms for map %d \n",i);
(void) fprintf(logFile, "for gridmap[%d], type->%s,Rij->%6.4f, epsij->%6.4f, hbond->%d\n",i,found_parm->autogrid_type, gridmap[i].Rij, gridmap[i].epsij,gridmap[i].hbond);
#endif
for (j=0; j<receptor_types_ct; j++){
found_parm = apm_find(receptor_types[j]);
gridmap[i].nbp_r[j] = (gridmap[i].Rij + found_parm->Rij)/2.;
gridmap[i].nbp_eps[j] = sqrt(gridmap[i].epsij * found_parm->epsij);
/*apply the vdW forcefield parameter/weight here */
// This was removed because "setup_p_l" does this for us... gridmap[i].nbp_eps[j] *= FE_coeff_vdW;
gridmap[i].xA[j] = 12;
/*setup hbond dependent stuff*/
gridmap[i].xB[j] = 6;
gridmap[i].hbonder[j] = 0;
if ((int)(gridmap[i].hbond)>2 &&
((int)found_parm->hbond==1||(int)found_parm->hbond==2)){ /*AS,A1,A2 map vs DS,D1 probe*/
gridmap[i].xB[j] = 10;
gridmap[i].hbonder[j] = 1;
gridmap[i].is_hbonder = TRUE;
/*Rij and epsij for this hb interaction in
* parm_data.dat file as Rii and epsii for heavy atom
* hb factors*/
gridmap[i].nbp_r[j] = gridmap[i].Rij_hb;
gridmap[i].nbp_eps[j] = gridmap[i].epsij_hb;
/*apply the hbond forcefield parameter/weight here */
// This was removed because "setup_p_l" does this for us... gridmap[i].nbp_eps[j] *= FE_coeff_hbond;
#ifdef DEBUG
(void) fprintf(logFile, "set %d-%d hb eps to %6.4f*%6.4f=%6.4f\n",i,j,gridmap[i].epsij_hb,found_parm->epsij_hb, gridmap[i].nbp_eps[j]);
#endif
} else if (((int)gridmap[i].hbond==1||(int)gridmap[i].hbond==2) &&
((int)found_parm->hbond>2)) { /*DS,D1 map vs AS,A1,A2 probe*/
gridmap[i].xB[j] = 10;
gridmap[i].hbonder[j] = 1;
gridmap[i].is_hbonder = TRUE;
/*Rij and epsij for this hb interaction in
* parm_data.dat file as Rii and epsii for heavy atom
* hb factors*/
gridmap[i].nbp_r[j] = found_parm->Rij_hb;
gridmap[i].nbp_eps[j] = found_parm->epsij_hb;
/*apply the hbond forcefield parameter/weight here */
// This was removed because "setup_p_l" does this for us... gridmap[i].nbp_eps[j] *= FE_coeff_hbond;
#ifdef DEBUG
(void) fprintf(logFile, "2: set %d-%d hb eps to %6.4f*%6.4f=%6.4f\n",i,j,gridmap[i].epsij_hb,found_parm->epsij_hb, gridmap[i].nbp_eps[j]);
#endif
}
#ifdef DEBUG
(void) fprintf(logFile, "vs receptor_type[%d]:type->%s, hbond->%d ",j,found_parm->autogrid_type, (int)found_parm->hbond);
(void) fprintf(logFile, "nbp_r->%6.4f, nbp_eps->%6.4f,xB=%d,hbonder=%d\n",gridmap[i].nbp_r[j], gridmap[i].nbp_eps[j],gridmap[i].xB[j], gridmap[i].hbonder[j]);
#endif
}; /*initialize energy parms for each possible receptor type*/
} /*for each map*/
(void) fprintf( logFile, "\nAtom type names for ligand atom types 1-%d used for ligand-atom affinity grid maps:\n\n", num_atom_maps);
for (i = 0; i < num_atom_maps; i++) {
(void) fprintf( logFile, "\t\t\tAtom type number %d corresponds to atom type name \"%s\".\n", gridmap[i].map_index, gridmap[i].type);
if (gridmap[i].is_covalent == TRUE) {
(void) fprintf( logFile, "\nAtom type number %d will be used to calculate a covalent affinity grid map\n\n", i + 1);
}
}
// at this point set up map_hydrogen, map_carbon, map_oxygen and map_nitrogen etc for vina potential
map_hydrogen = get_map_index("HD");
map_nonHB_hydrogen = get_map_index("H");
map_carbon = get_map_index("C");
map_arom_carbon = get_map_index("A");
map_oxygen = get_map_index("OA");
map_nitrogen = get_map_index("NA");
map_nonHB_nitrogen = get_map_index("N");
map_sulphur = get_map_index("SA");
map_nonHB_sulphur = get_map_index("S");
map_fluorine = get_map_index("F");
map_bromine = get_map_index("Br");
map_chlorine = get_map_index("Cl");
map_iodine = get_map_index("I");
(void) fprintf( logFile, "\n\n");
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_RECEPTOR_TYPES:
// Read in the list of atom types in the receptor.
// GPF_line e.g.: "receptor_types N O A C HH NH"
//
// NOTE: This line is not guaranteed to match the actual
// atom types present in the receptor PDBQT file
// specified by the "receptor" command.
receptor_types_ct = parsetypes(GPF_line, receptor_atom_types, MAX_ATOM_TYPES);
receptor_types_gpf_ct = receptor_types_ct;
has_receptor_types_in_gpf = 1;
#ifdef DEBUG
printf("receptor_types_gpf_ct=%d\n",receptor_types_gpf_ct);
printf("receptor_types_ct=%d\n",receptor_types_ct);
#endif
for(i=0; i<receptor_types_ct; i++){
strcpy(receptor_types[i], receptor_atom_types[i]);
#ifdef DEBUG
printf("%d %s ->%s\n",i, receptor_atom_types[i], receptor_types[i]);
#endif
}
for (i=0; i<receptor_types_ct; i++) {
found_parm = apm_find(receptor_atom_types[i]);
if (found_parm != NULL){
found_parm->rec_index = i;
} else {
(void) sprintf( message, "Unknown receptor type: \"%s\"\n -- Add parameters for it to the parameter library first!\n", receptor_atom_types[i]);
print_error( logFile, FATAL_ERROR, message );
}
};
// at this point set up hydrogen, carbon, oxygen and nitrogen
hydrogen = get_rec_index("HD");
nonHB_hydrogen = get_rec_index("H");
carbon = get_rec_index("C");
arom_carbon = get_rec_index("A");
oxygen = get_rec_index("OA");
nitrogen = get_rec_index("NA");
nonHB_nitrogen = get_rec_index("N");
sulphur = get_rec_index("SA");
nonHB_sulphur = get_rec_index("S");
bromine = get_rec_index("Br");
chlorine = get_rec_index("Cl");
fluorine = get_rec_index("Fl");
iodine = get_rec_index("I");
#ifdef DEBUG
printf("assigned receptor types:arom_carbon->%d, hydrogen->%d,nonHB_hydrogen->%d, carbon->%d, oxygen->%d, nitrogen->%d\n, nonHB_nitrogen->%d, sulphur->%d, nonHB_sulphur->%d\n",arom_carbon,hydrogen, nonHB_hydrogen, carbon,oxygen, nitrogen, nonHB_nitrogen, sulphur, nonHB_sulphur);
#endif
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_SOL_PAR: //THIS IS OBSOLETE!!!
/*
** Read volume and solvation parameter for probe:
*/
(void) sscanf( GPF_line, "%*s %s %lf %lf", thisparm.autogrid_type, &temp_vol, &temp_solpar );
found_parm = apm_find(thisparm.autogrid_type);
if (found_parm != NULL) {
found_parm->vol = temp_vol;
found_parm->solpar = temp_solpar;
i = found_parm->map_index;
if (i>=0){
/*DON'T!!!*/
/*convert cal/molA^3 to kcal/molA^3 */
/*gridmap[i].solpar_probe = temp_solpar * 0.001;*/
gridmap[i].solpar_probe = temp_solpar ;
(void) fprintf( logFile, "\nProbe %s solvation parameters: \n\n\tatomic fragmental volume: %.2f A^3\n\tatomic solvation parameter: %.4f cal/mol A^3\n\n", found_parm->autogrid_type, found_parm->vol,found_parm->solpar);
(void) fflush( logFile);
}
} else {
(void) fprintf( logFile, "%s key not found\n", thisparm.autogrid_type);
};
(void) fflush( logFile);
break; /* end solvation parameter */
/******************************************************************************/
/*case GPF_CONSTANT:*/
/*break;*/
/******************************************************************************/
/******************************************************************************/
case GPF_USE_VINA_POTENTIAL:
use_vina_potential = TRUE;
(void) fprintf( logFile, "\n Using Vina potential for calculation.\n\n");
//(void) printf( "\n Using Vina potential for calculation. use_vina_potential==%d\n\n", use_vina_potential);
break;
/******************************************************************************/
case GPF_MAP:
/* */
/* The variable "map_index" is the 0-based index of the ligand atom type
* we are calculating a map for.
* If the "types" line was CNOSH, there would be 5 ligand atom maps to calculate,
* and since "map_index" is initialized to -1, map_index will increment
* each time there is a "map" keyword in the GPF. The value of
* map_index should therefore go from 0 to 4 for each "map" keyword.
* In this example, num_atom_maps would be 5, and num_atom_maps-1 would be
* 4, so if map_index is > 4, there is something wrong in the number of
* "map" keywords. */
++map_index;
if (map_index > num_atom_maps - 1) {
(void) sprintf(message, "Too many \"map\" keywords (%d); the \"ligand_types\" command declares only %d atom types.\nRemove a \"map\" keyword from the GPF.\n", map_index + 1, num_atom_maps);
print_error( logFile, FATAL_ERROR, message );
}
/* Read in the filename for this grid map */ /* GPF_MAP */
(void) sscanf( GPF_line, "%*s %s", gridmap[map_index].map_filename);
if ( (gridmap[map_index].map_fileptr = ad_fopen( gridmap[map_index].map_filename, "w", logFile)) == NULL ) {
(void) sprintf( message, "Cannot open grid map \"%s\" for writing.", gridmap[map_index].map_filename);
print_error( logFile, FATAL_ERROR, message );
}
(void) fprintf( logFile, "\nOutput Grid Map %d: %s\n\n", (map_index + 1), gridmap[map_index].map_filename);
(void) fflush( logFile);
break;
/******************************************************************************/
case GPF_ELECMAP:
(void) sscanf( GPF_line, "%*s %s", gridmap[elecPE].map_filename);
if ( (gridmap[elecPE].map_fileptr = ad_fopen( gridmap[elecPE].map_filename, "w", logFile)) == NULL){
(void) sprintf( message, "can't open grid map \"%s\" for writing.\n", gridmap[elecPE].map_filename);
print_error( logFile, FATAL_ERROR, message );
}
(void) fprintf( logFile, "\nOutput Electrostatic Potential Energy Grid Map: %s\n\n", gridmap[elecPE].map_filename);
break;
/******************************************************************************/
case GPF_DSOLVMAP:
(void) sscanf( GPF_line, "%*s %s", gridmap[dsolvPE].map_filename);
if ( (gridmap[dsolvPE].map_fileptr = ad_fopen( gridmap[dsolvPE].map_filename, "w", logFile)) == NULL){
(void) sprintf( message, "can't open grid map \"%s\" for writing.\n", gridmap[dsolvPE].map_filename);
print_error( logFile, FATAL_ERROR, message );
}
(void) fprintf( logFile, "\nOutput Desolvation Free Energy Grid Map: %s\n\n", gridmap[dsolvPE].map_filename);
break;
/******************************************************************************/
case GPF_COVALENTMAP:
(void) sscanf( GPF_line, "%*s %lf %lf %lf %lf %lf", &covhalfwidth, &covbarrier, &(covpos[X]), &(covpos[Y]), &(covpos[Z]));
(void) fprintf( logFile, "\ncovalentmap <half-width in Angstroms> <barrier> <x> <y> <z>\n");
(void) fprintf( logFile, "\nCovalent well's half-width in Angstroms: %8.3f\n", covhalfwidth);
(void) fprintf( logFile, "\nCovalent barrier energy in kcal/mol: %8.3f\n", covbarrier);
(void) fprintf( logFile, "\nCovalent attachment point will be positioned at: (%8.3f, %8.3f, %8.3f)\n\n", covpos[X], covpos[Y], covpos[Z]);
for (i = 0; i < XYZ; i++) {
/* center covpos in the grid maps frame of reference, */
covpos[i] -= center[i];
}
break;
/******************************************************************************/
case GPF_DISORDER:
disorder_h = TRUE;
(void) fprintf( logFile, "\nHydroxyls will be disordered \n\n");
break;
/******************************************************************************/
case GPF_SMOOTH:
(void) sscanf( GPF_line, "%*s %lf", &r_smooth);
(void) fprintf( logFile, "\nPotentials will be smoothed by: %.3lf Angstrom\n\n", r_smooth);
break;
/******************************************************************************/
case GPF_QASP:
(void) sscanf( GPF_line, "%*s %lf", &solpar_q);
(void) fprintf( logFile, "\nCharge component of the atomic solvation parameter: %.3lf\n\n", solpar_q);
/* Typical value of solpar_q is 0.001118 */
break;
/******************************************************************************/
case GPF_DIEL:
(void) sscanf( GPF_line, "%*s %lf", &diel);
if (diel < 0.) {
/* negative... */
dddiel = TRUE;
/* calculate ddd of Mehler & Solmajer */
(void) fprintf( logFile, "\nUsing *distance-dependent* dielectric function of Mehler and Solmajer, Prot.Eng.4, 903-910.\n\n");
if(ET)
epsilon[0] = 1.0;
else
et.epsilon_fn[0] = 1.0;
for (indx_r = 1; indx_r < NDIEL; indx_r++) {
et.epsilon_fn[indx_r] = calc_ddd_Mehler_Solmajer( angstrom(indx_r), APPROX_ZERO );
if(ET)epsilon[indx_r] = et.epsilon_fn[indx_r];
}
(void) fprintf( logFile, " d Dielectric\n ___ __________\n");
for (i = 0; i <= min(500,NDIEL); i += 10) {
ri = angstrom(i);
(void) fprintf( logFile, "%4.1lf%9.2lf\n", ri, et.epsilon_fn[i]);
}
(void) fprintf( logFile, "\n");
/* convert epsilon to factor / epsilon */
for (i = 0; i < NDIEL; i++) {
if(ET)
epsilon[i] = factor / epsilon[i];
else
et.r_epsilon_fn[i] = factor/et.epsilon_fn[i];
}
} else {
/* positive or zero... */
dddiel = FALSE;
if (diel <= APPROX_ZERO) {
diel = 40.;
}
(void) fprintf( logFile, "Using a *constant* dielectric of: %.2f\n", diel);
invdielcal = factor / diel;
}
break;
/******************************************************************************/
case GPF_FMAP:
(void) sscanf( GPF_line, "%*s %s", floating_grid_filename);
if ( (floating_grid_fileptr = ad_fopen( floating_grid_filename, "w", logFile)) == NULL) {
(void) sprintf( message, "can't open grid map \"%s\" for writing.\n", floating_grid_filename);
print_error( logFile, FATAL_ERROR, message );
}
(void) fprintf( logFile, "\nFloating Grid file name = %s\n", floating_grid_filename);
++num_maps;
floating_grid = TRUE;
break;
/******************************************************************************/
case GPF_PARAM_FILE:
/* open and read the AD4 parameters .dat file */
parameter_library_found = sscanf( GPF_line, "%*s %s ", FN_parameter_library);
read_parameter_library(logFile, outlev, FN_parameter_library, &AD4);
break;
/******************************************************************************/
case GPF_NBP_COEFFS:
case GPF_NBP_R_EPS:
/*
** nbp_r_eps
** override energy parameters:
** Lennard-Jones and Hydrogen Bond Potentials,
** GPF_NBP_REQM_EPS: Using epsilon and r-equilibrium values...
** for the interaction of the specified types
*/
Real epsij;
Real Rij;
char param[2][LINE_LEN];
int xA, xB, nfields;
nfields = sscanf( GPF_line, "%*s " FDFMT2 " %d %d %s %s", &Rij, &epsij, &xA, &xB, param[0], param[1] );
if(nfields!=6) {
(void) sprintf( message, "syntax error, not 6 values in NBP_R_EPS line");
print_error(logFile, FATAL_ERROR, message);
}
/* check values?
if ((Rij < RIJ_MIN) || (Rij > RIJ_MAX)) {
(void) fprintf( logFile,
"WARNING: pairwise distance, Rij, %.2f, is not a very reasonable value for the equilibrium separation of two atoms! (%.2f Angstroms <= Rij <= %.2f Angstroms)\n\n", Rij, RIJ_MIN, RIJ_MAX);
*/
if ( GPF_keyword == GPF_NBP_R_EPS ) {
// Calculate the coefficients from Rij and epsij
/* Defend against division by zero... */
if (xA != xB) {
double tmpconst = epsij / (Real)(xA - xB);
cA = tmpconst * pow( (double)Rij, (double)xA ) * (Real)xB;
cB = tmpconst * pow( (double)Rij, (double)xB ) * (Real)xA;
} else {
(void) sprintf( message, "exponents xA and xB cannot be equal.\n");
print_error( logFile, FATAL_ERROR, message );
}
} else {
cA = Rij;
cB = epsij;
}
for (int i=0;i<2;i++) {
/* try both orderings of "ligand,receptor" and "receptor,ligand": not error if not found */
int ligtype, rectype;
ligtype = get_map_index(param[i%2]);
rectype = get_rec_index(param[(i+1)%2]);
if (ligtype>=0 && rectype>=0){
pr(logFile, "\n nbp_r_eps or nbp_coeffs: map_index(%s)= %d rec_index(%s)= %d\n",param[i%2],ligtype, param[(i+1)%2],rectype);
gridmap[ligtype].cA[rectype] = cA;
gridmap[ligtype].cB[rectype] = cB;
gridmap[ligtype].nbp_r[rectype] = Rij;
gridmap[ligtype].nbp_eps[rectype] = epsij;
gridmap[ligtype].xA[rectype] = xA;
gridmap[ligtype].xB[rectype] = xB;
}
}
pr(logFile, "\nOverriding non-bonded interaction energies for docking calculation;\n");
break;
/******************************************************************************/
default:
break;
/******************************************************************************/
} /* second switch */
} /* while: finished reading gpf */
/* Map files checkpoint (number of maps, desolv and elec maps ) SF */
/* Number of maps defined for atom types*/
if ( map_index < num_atom_maps -1 ) {
(void) fprintf( logFile, "Too few \"map\" keywords (%d); the \"ligand_types\" command declares %d atom types.\nAdd a \"map\" keyword from the GPF.\n", map_index + 1, num_atom_maps );
(void) sprintf( message, "Not enough map keywords found.\n" );
print_error( logFile, FATAL_ERROR, message );
}
if (!gridmap) {
print_error( logFile, FATAL_ERROR, "No gridmaps defined. AutoGrid must exit." );
}
/* Desolvation map */
if (( not use_vina_potential) && (strlen( gridmap[dsolvPE].map_filename ) == 0 )) {
(void) fprintf( logFile, "The desolvation map file is not defined in the GPF.\n" );
(void) sprintf( message, "No desolvation map file defined.\n" );
print_error( logFile, FATAL_ERROR, message );
}
/* Electrostatic map */
if ((not use_vina_potential) &&( strlen( gridmap[elecPE].map_filename ) == 0 )) {
(void) fprintf( logFile, "The electrostatic map file is not defined in the GPF.\n" );
(void) sprintf( message, "No electrostatic map file defined.\n" );
print_error( logFile, FATAL_ERROR, message );
}
/* End of map files checkpoint SF */
(void) fprintf( logFile, "\n>>> Closing the grid parameter file (GPF)... <<<\n\n");
(void) fprintf( logFile, UnderLine);
(void) fclose( GPF );
if ( ! floating_grid ) {
(void) fprintf( logFile, "\n\nNo Floating Grid was requested.\n");
}
(void) fprintf( AVS_fld_fileptr, "# AVS field file\n#\n");
(void) fprintf( AVS_fld_fileptr, "# AutoDock Atomic Affinity and Electrostatic Grids\n#\n");
(void) fprintf( AVS_fld_fileptr, "# Created by %s.\n#\n", programname);
(void) fprintf( AVS_fld_fileptr, "#SPACING %.3f\n", (float) spacing);
(void) fprintf( AVS_fld_fileptr, "#NELEMENTS %d %d %d\n", nelements[X], nelements[Y], nelements[Z]);
(void) fprintf( AVS_fld_fileptr, "#CENTER %.3lf %.3lf %.3lf\n", center[X], center[Y], center[Z]);
(void) fprintf( AVS_fld_fileptr, "#MACROMOLECULE %s\n", receptor_filename);
(void) fprintf( AVS_fld_fileptr, "#GRID_PARAMETER_FILE %s\n#\n", grid_param_fn );
(void) fprintf( AVS_fld_fileptr, "ndim=3\t\t\t# number of dimensions in the field\n");
(void) fprintf( AVS_fld_fileptr, "dim1=%d\t\t\t# number of x-elements\n", n1[X]);
(void) fprintf( AVS_fld_fileptr, "dim2=%d\t\t\t# number of y-elements\n", n1[Y]);
(void) fprintf( AVS_fld_fileptr, "dim3=%d\t\t\t# number of z-elements\n", n1[Z]);
(void) fprintf( AVS_fld_fileptr, "nspace=3\t\t# number of physical coordinates per point\n");
(void) fprintf( AVS_fld_fileptr, "veclen=%d\t\t# number of affinity values at each point\n", num_maps);
(void) fprintf( AVS_fld_fileptr, "data=float\t\t# data type (byte, integer, float, double)\n");
(void) fprintf( AVS_fld_fileptr, "field=uniform\t\t# field type (uniform, rectilinear, irregular)\n");
for (i = 0; i < XYZ; i++) {
(void) fprintf( AVS_fld_fileptr, "coord %d file=%s filetype=ascii offset=%d\n", (i + 1), xyz_filename, (i*2));
}
for (i = 0; i < num_atom_maps; i++) {
(void) fprintf( AVS_fld_fileptr, "label=%s-affinity\t# component label for variable %d\n", gridmap[i].type, (i + 1));
} /* i */
(void) fprintf( AVS_fld_fileptr, "label=Electrostatics\t# component label for variable %d\n", num_maps-2);
(void) fprintf( AVS_fld_fileptr, "label=Desolvation\t# component label for variable %d\n", num_maps-1);
if (floating_grid) {
(void) fprintf( AVS_fld_fileptr, "label=Floating_Grid\t# component label for variable %d\n", num_maps);
}
(void) fprintf( AVS_fld_fileptr, "#\n# location of affinity grid files and how to read them\n#\n");
for (i = 0; i < num_atom_maps; i++) {
(void) fprintf( AVS_fld_fileptr, "variable %d file=%s filetype=ascii skip=6\n", (i + 1), gridmap[i].map_filename);
}
(void) fprintf( AVS_fld_fileptr, "variable %d file=%s filetype=ascii skip=6\n", num_atom_maps + 1, gridmap[elecPE].map_filename);
(void) fprintf( AVS_fld_fileptr, "variable %d file=%s filetype=ascii skip=6\n", num_atom_maps + 2, gridmap[dsolvPE].map_filename);
if (floating_grid) {
(void) fprintf( AVS_fld_fileptr, "variable %d file=%s filetype=ascii skip=6\n", num_maps, floating_grid_filename);
}
(void) fclose( AVS_fld_fileptr);
#ifdef BOINCCOMPOUND
boinc_fraction_done(0.1);
#endif
(void) fprintf( logFile, "\n\nCalculating Pairwise Interaction Energies\n");
(void) fprintf( logFile, "=========================================\n\n");
/**************************************************
* do the map stuff here:
* set up xA, xB, npb_r, npb_eps and hbonder
* before this pt
**************************************************/
if (use_vina_potential) {
(void) fprintf( logFile, "Use vina potential is %d\n\n", use_vina_potential);
}
float map_Rij;
//from autodock_vina_1_1_1/src/main.cpp,line 394
float wt_gauss1 = -0.035579;
float wt_gauss2 = -0.005156;
float wt_repulsion = 0.840245;
float wt_hydrogen = -0.587439;
float wt_hydrophobic = -0.035069; //C_H,F_H,Cl_H,Br_H,I_H
// xs_vdw_radii from atom_constants.h now in read_parameter_library.cc
//float C_H = 1.9;//C_P
//float N_P = 1.8;//N_D,N_A,N_DA
//float O_P = 1.7;//O_D,O_A,O_DA
//float S_P = 2.0;
//float P_P = 2.1;
//float F_H = 1.5;
//float Cl_H = 1.8;
//float Br_H = 2.0;
//float I_H = 2.2;
//float Met_D = 1.2; //metal_donor:Mg,Mn,Zn,Ca,Fe,Cl,Br
//float Met_non_ad = 1.75;//metal_non_ad:Cu,Fe,Na,K,Hg,Co,U,Cd,Ni
double rddist;
double delta_e = 0.0;
// ia_dist
// interatom_distance |.................|
// interatom_distance - xs_radius(t1) -xs_radius(t2) .--|........|-----.
// at1 at2
//vina distance from current gridpt to atom ia: xs_rad1 rddist xs_rad2
//0. process receptor to setup type[ia], coords[ia], xs_rad[ia]
//1. setup map types
//2. setup the energy_lookup tables
//3. loop over all the maps
//4. loop over all pts in current map_ia
//5. loop over all the receptor atoms adding to this pt
// rdist: interatom_distance from atom coords to current grid pt
// rddist based on types: ia_dist - (xs_rad1 + xs_rad2)
// e_attractive:
// delta_e = rgauss1*exp(-((rddist)/0.5)**2) + rgauss2*exp(-((rddist-3.)/2.)**2);
// energy_lookup[i][indx_r][ia] += delta_e
// e_repulsive:
// if (rddist<0.0){
// delta_e = rrepulsive*(rddist**2);
// energy_lookup[i][indx_r][ia] += delta_e;
// };
// e_hbond:
// (1)set ihb from types; it is set to 1 if pair of types is suitable for hbond int.
// ihb = 0;
// if (ihb>0){
// if (rddist<0.7)
// delta_e = 1*weight_hydrogen;
// energy_lookup[i][indx_r][ia] += delta_e;
// if ((-0.7<rddist) && (rddist<0.))
// delta_e =(rddist/0.7)*weight_hydrogen;
// energy_lookup[i][indx_r][ia] -= delta_e;
// }
// e_hydrophobic:
// //energy_lookup[atom_type[ia]][indx_r][map_ia]+= e_hphob
// (1)TODO: set ihb from types; it is set to 1 if pair of types is suitable for hydrophobic int.
// ihb = 0
// if (rddist<0.5){
// energy_lookup[i][indx_r][ia]+= 1*weight_hydrophobic;}
// else if ((0.5<rddist)&& (rdist<1.5)) {
// energy_lookup[i][indx_r][ia]+=(0.5-rddist)*weight_hydrophobic;
// };
// to use in filling out the gridmap
//???? gridmap[map_index].energy += energy_lookup[i][indx_r][i];
//6. output this map
//
for (ia=0; ia<num_atom_maps; ia++){
if (gridmap[ia].is_covalent == FALSE) {
/* i is the index of the receptor atom type, that
* the ia type ligand probe will interact with. */ /* GPF_MAP */
#ifdef DEBUG
printf("receptor_types_ct=%d\n", receptor_types_ct);
#endif
ParameterEntry * lig_parm = apm_find(ligand_types[ia]);
for (i = 0; i < receptor_types_ct; i++) {
/*for each receptor_type*/
cA = gridmap[ia].cA[i];
cB = gridmap[ia].cB[i];
xA = gridmap[ia].xA[i];
xB = gridmap[ia].xB[i];
Rij = gridmap[ia].nbp_r[i];
epsij = gridmap[ia].nbp_eps[i];
ParameterEntry * rec_parm = apm_find(receptor_types[i]);
if (use_vina_potential){//from vina: atom_constants.h
#ifdef DEBUG
printf("@@in use_vina_potential loop ia=%d, i=%d\n", ia,i);
fprintf(logFile, "@@in use_vina_potential loop ia=%d, i=%d\n", ia,i);
#endif
// get xs_radius for this probe type from parameter_library
Rij = lig_parm->xs_radius; //see read_parameter_library
map_Rij = rec_parm->xs_radius; //see read_parameter_library
//@@TODO@@: add SER-OG,THR-OG, TYR_OH: X(1.2) Cl_H(1.8),Br_H(2.0),I_H(2.2),Met_D(1.2)
/* loop over distance index, indx_r, from 0 to NEINT (scaled NBC non-bond cutoff) */ /* GPF_MAP */
#ifdef DEBUG
printf("%d-%d-building Rij=%6.3lf, map_Rij=%10.8f for %s %s\n",ia,i, Rij, map_Rij, gridmap[ia].type, ligand_types[ia]);
(void) fprintf( logFile, "Calculating vina energies for %s-%s interactions (%d, %d).\n", gridmap[ia].type, receptor_types[i], ia, i );
#endif
for (indx_r = 1; indx_r < NEINT; indx_r++) {
r = angstrom(indx_r);
// compute rddist: map_Rij rddist Rij
// interatom_distance - xs_radius(t1) -xs_radius(t2) .--|........|-----.
rddist = r - (map_Rij + Rij);
//use rddist for computing the vina component energies
//@@TODO@@: replace with functions from vina..
//attraction:
delta_e = wt_gauss1 * exp(-pow(((rddist)/0.5),2)) + wt_gauss2 * exp(-pow(((rddist-3.)/2.),2));
//at distance 'indx_r': interaction of receptor atomtype 'ia' - ligand atomtype 'i'
et.e_vdW_Hb[indx_r][i][ia] += delta_e;
//repulsion
if (rddist<0){
delta_e = wt_repulsion*pow(rddist,2);
et.e_vdW_Hb[indx_r][i][ia] += delta_e;
}
//hbond
if (gridmap[ia].hbonder[i]>0){ //check that ia-i must be hbonder
#ifdef DEBUG
printf(" processing gridmap= %d-hbonder i= %d\n",ia, i);
#endif
if (rddist<=0.7) { //what about EXACTLY 0.7?
delta_e = 1*wt_hydrogen;
et.e_vdW_Hb[indx_r][i][ia] += delta_e;
}
if ((-0.7<rddist) && (rddist<=0.)){
delta_e =(rddist/0.7)*wt_hydrogen;
et.e_vdW_Hb[indx_r][i][ia] -= delta_e;
}
}
// hydrophobic: check using index 'i' compared with 'carbon',
// carbon/aromatic_carbon to non-hbonder
//@@TODO: add support for these other hydrophobic interactions:
//if (((i==carbon)||(i==arom_carbon)||(i==fluorine)||(i==chlorine)||(i==bromine)||(i==iodine))
//&& ((ia==carbon)||(ia==arom_carbon)||(ia==fluorine)||(ia==chlorine)||(ia==bromine)||(ia==iodine)))
//if (((i==carbon)||(i==arom_carbon)) && ((ia==carbon)||(ia==arom_carbon)))
if ((gridmap[ia].hbonder[i]==0)&&(gridmap[i].hbonder[ia]==0)) { //4-3-12:hydrophobic update
delta_e = 0.;
if (rddist<0.5) {
delta_e = 1*wt_hydrophobic;
} else if (rddist<1.5){
delta_e = (0.5-rddist)*wt_hydrophobic;
}
et.e_vdW_Hb[indx_r][i][ia] += delta_e;
}
} /*for each distance*/
#ifdef DEBUG
printf("END USE_VINA_POTENTIAL\n");
#endif
} /* END use_vina_potential*/
else { //use regular autogrid potential
/*for each receptor_type get its parms and fill in tables*/
if (cA==0 && cB==0){
cA = (tmpconst = epsij / (double)(xA - xB)) * pow( Rij, (double)xA ) * (double)xB;
cB = tmpconst * pow( Rij, (double)xB ) * (double)xA;
}
if ( isnan( cA ) ) {
print_error( logFile, FATAL_ERROR, "Van der Waals coefficient cA is not a number. AutoGrid must exit." );
}
if ( isnan( cB ) ) {
print_error( logFile, FATAL_ERROR, "Van der Waals coefficient cB is not a number. AutoGrid must exit." );
}
/*printf("tmpconst = %6.4f, cA = %6.4f, cB = %6.4f\n",tmpconst, cA, cB);*/
dxA = (double) xA;
dxB = (double) xB;
if ( xA == 0 ) {
print_error( logFile, FATAL_ERROR, "Van der Waals exponent xA is 0. AutoGrid must exit." );
}
if ( xB == 0 ) {
print_error( logFile, FATAL_ERROR, "Van der Waals exponent xB is 0. AutoGrid must exit." );
}
(void) fprintf( logFile, "\n %9.1lf %9.1lf \n", cA, cB);
(void) fprintf( logFile, " E = ----------- - -----------\n");
(void) fprintf( logFile, " %s, %s %2d %2d\n", gridmap[ia].type, receptor_types[i], xA, xB);
(void) fprintf( logFile, " r r \n\n");
/* loop over distance index, indx_r, from 0 to max(NEINT,NDIEL) */ /* GPF_MAP */
(void) fprintf( logFile, "Calculating energies for %s-%s interactions.\n", gridmap[ia].type, receptor_types[i] );
// do up to non-bond cutoff distance
for (indx_r = 1; indx_r < NEINT; indx_r++) {
r = angstrom(indx_r);
rA = pow( r, dxA);
rB = pow( r, dxB);
// these should probably be assert()s - MP TODO
if(i>=NUM_RECEPTOR_TYPES) printf("i>=%d %d\n", NUM_RECEPTOR_TYPES,i);
if(ia>=MAX_MAPS) printf("ia>=%d %d\n", MAX_MAPS, ia);
et.e_vdW_Hb[indx_r][i][ia] = min(EINTCLAMP, (cA/rA - cB/rB));
//energy_lookup[i][indx_r][ia] = min(EINTCLAMP, (cA/rA - cB/rB));
//if ( fabs(energy_lookup[i][indx_r][ia]-et.e_vdW_Hb[indx_r][i][ia])>0.01)
// printf("i=%d indx_r=%d ia = %d %lf != %lf\n",i, indx_r, ia, energy_lookup[i][indx_r][ia], et.e_vdW_Hb[indx_r][i][ia]);
} /*for each distance*/
energy_lookup[i][0][ia] = EINTCLAMP;
energy_lookup[i][NEINT-1][ia] = 0.;
et.e_vdW_Hb[0][i][ia] = EINTCLAMP;
et.e_vdW_Hb[NEINT-1][i][ia] = 0.;
#ifdef PRINT_BEFORE_SMOOTHING
/*PRINT OUT INITIAL VALUES before smoothing here */
(void) fprintf( logFile, "before smoothing\n r ");
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, " %s ", receptor_types[iat]);
}
(void) fprintf( logFile, "\n ___");
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, " ________");
}
(void) fprintf( logFile, "\n");
for (j = 0; j <= min(500,NEINT); j += 10) {
(void) fprintf( logFile, "%4.1lf", angstrom(j));
for (iat = 0; iat < receptor_types_ct; iat++) {
if(ET)
(void) fprintf( logFile, (energy_lookup[iat][j][ia]<100000.)?"%9.2lf":"%9.2lg", energy_lookup[iat][j][ia]);
else
(void) fprintf( logFile, (et.e_vdW_Hb[j][iat][ia]<100000.)?"%9.2lf":"%9.2lg", et.e_vdW_Hb[j][iat][ia]);
}
(void) fprintf( logFile, "\n");
}
(void) fprintf( logFile, "\n");
#endif
/* smooth with min function */ /* GPF_MAP */
/* Angstrom is divided by A_DIV in look-up table. */
/* Typical value of r_smooth is 0.5 Angstroms */
/* so i_smooth = 0.5 * 100. / 2 = 25 */
i_smooth = (int) (r_smooth*A_DIV/2.);
if (i_smooth > 0) {
for (indx_r = 0; indx_r < NEINT; indx_r++) {
energy_smooth[indx_r] = 100000.;
for (j = max(0, indx_r - i_smooth); j < min(NEINT, indx_r + i_smooth + 1); j++) {
if (ET)
energy_smooth[indx_r] = min(energy_smooth[indx_r], energy_lookup[i][j][ia]);
else
energy_smooth[indx_r] = min(energy_smooth[indx_r], et.e_vdW_Hb[j][i][ia]);
}
}
for (indx_r = 0; indx_r < NEINT; indx_r++) {
energy_lookup[i][indx_r][ia] = energy_smooth[indx_r];
et.e_vdW_Hb[indx_r][i][ia] = energy_smooth[indx_r];
}
} /* endif smoothing */
} /* end regular autogrid potential */
} /* for i in receptor types: build energy table for this map */
/*
* Print out a table, of distance versus energy...
*/ /* GPF_MAP */
(void) fprintf( logFile, "\n\nFinding the lowest pairwise interaction energy within %.1f Angstrom (\"smoothing\").\n\n r ", r_smooth);
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, " %s ", receptor_types[iat]);
/*(void) fprintf( logFile, " %c ", receptor_atom_type_string[iat]);*/
} /* iat */
(void) fprintf( logFile, "\n ___");
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, " ________");
} /* iat */
(void) fprintf( logFile, "\n");
for (j = 0; j <= min(500,NEINT); j += 10) {
(void) fprintf( logFile, "%4.1lf", angstrom(j));
for (iat = 0; iat < receptor_types_ct; iat++) {
if(ET)
(void) fprintf( logFile, (energy_lookup[iat][j][ia]<100000.)?"%9.2lf":"%9.2lg", energy_lookup[iat][j][ia]);
else
(void) fprintf( logFile, (et.e_vdW_Hb[j][iat][ia]<100000.)?"%9.2lf":"%9.2lg", et.e_vdW_Hb[j][iat][ia]);
} /* iat */
(void) fprintf( logFile, "\n");
} /* j */
(void) fprintf( logFile, "\n");
(void) fprintf( logFile, "\n\nEnergyTable:\n");
(void) fprintf( logFile, "Finding the lowest pairwise interaction energy within %.1f Angstrom (\"smoothing\").\n\n r ", r_smooth);
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, " %s ", receptor_types[iat]);
/*(void) fprintf( logFile, " %c ", receptor_atom_type_string[iat]);*/
} /* iat */
(void) fprintf( logFile, "\n ___");
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, " ________");
} /* iat */
(void) fprintf( logFile, "\n");
for (j = 0; j <= min(500,NEINT); j += 10) {
(void) fprintf( logFile, "%4.1lf", angstrom(j));
for (iat = 0; iat < receptor_types_ct; iat++) {
(void) fprintf( logFile, (et.e_vdW_Hb[j][iat][ia]<100000.)?"%9.2lf":"%9.2lg", et.e_vdW_Hb[j][iat][ia]);
} /* iat */
(void) fprintf( logFile, "\n");
} /* j */
(void) fprintf( logFile, "\n");
} else {
/* parsing for intnbp not needed for covalent maps */
(void) fprintf( logFile, "\nAny internal non-bonded parameters will be ignored for this map, since this is a covalent map.\n");
} /*end of else parsing intnbp*/
} /*end of loop over all the maps*/
/* exponential function for receptor and ligand desolvation */
/* note: the solvation term ranges beyond the non-bond cutoff
* and will not be smoothed
*/
double sigma = 3.6;
for (indx_r = 1; indx_r < NDIEL; indx_r++) {
r = angstrom(indx_r);
et.sol_fn[indx_r] = AD4.coeff_desolv * exp(-sq(r)/(2.*sq(sigma)));
}
/**************************************************
* Loop over all RECEPTOR atoms to
* calculate bond vectors for directional H-bonds
**************************************************/
//setup the canned atom types here....
//at this point set up hydrogen, carbon, oxygen and nitrogen
hydrogen = get_rec_index("HD");
nonHB_hydrogen = get_rec_index("H");
carbon = get_rec_index("C");
arom_carbon = get_rec_index("A");
oxygen = get_rec_index("OA");
nitrogen = get_rec_index("NA");
nonHB_nitrogen = get_rec_index("N");
sulphur = get_rec_index("SA");
nonHB_sulphur = get_rec_index("S");
if (not use_vina_potential){
/********************************************
* Start bond vector loop
********************************************/
for (ia=0; ia<num_receptor_atoms; ia++) { /*** ia = i_receptor_atom_a ***/
disorder[ia] = FALSE; /* initialize disorder flag. */
warned = 'F';
/*
* Set scan limits looking for bonded atoms
*/
from = max(ia-20, 0);
to = min(ia + 20, num_receptor_atoms-1);
/*
* If 'ia' is a hydrogen atom, it could be a
* RECEPTOR hydrogen-BOND DONOR,
*/
/*8:CHANGE HERE: fix the atom_type vs atom_types problem in following*/
if ((int)hbond[ia] == 2) { /*D1 hydrogen bond donor*/
for ( ib = from; ib <= to; ib++) { /*** ib = i_receptor_atom_b ***/
if (ib != ia) {
/*
* => NH-> or OH->
*/
/*if ((atom_type[ib] == nitrogen) || (atom_type[ib]==nonHB_nitrogen) ||(atom_type[ib] == oxygen)||(atom_type[ib] == sulphur)||(atom_type[ib]==nonHB_sulphur)) {*/
/*
* Calculate the square of the N-H or O-H bond distance, rd2,
* ib-ia ib-ia
*/
for (i = 0; i < XYZ; i++) {
d[i] = coord[ia][i] - coord[ib][i];
}
rd2 = sq( d[X] ) + sq( d[Y] ) + sq( d[Z]);
/*
* If ia & ib are less than 1.3 A apart -- they are covalently bonded,
*/
if (rd2 < 1.90) { /*INCREASED for H-S bonds*/
if (rd2 < APPROX_ZERO) {
if (rd2 == 0.) {
(void) sprintf ( message, "While calculating an H-O or H-N bond vector...\nAttempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", ia + 1, ib + 1);
print_error( logFile, WARNING, message );
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
/*
* N-H: Set exponent rexp to 2 for m/m H-atom,
*/
/*if (atom_type[ib] == nitrogen) rexp[ia] = 2;*/
if ((atom_type[ib] != oxygen)&&(atom_type[ib] != sulphur)) rexp[ia] = 2;
/*
* O-H: Set exponent rexp to 4 for m/m H-atom,
* and flag disordered hydroxyls
*/
if ((atom_type[ib] == oxygen)||(atom_type[ib] == sulphur)) {
rexp[ia] = 4;
if (disorder_h == TRUE) disorder[ia] = TRUE;
}
/*
* Normalize the vector from ib to ia, N->H or O->H...
*/
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = d[i] * inv_rd;
}
/*
* First O-H/N-H H-bond-donor found; Go on to next atom,
*/
break;
} /* Found covalent bond. */
/*} Found NH or OH in receptor. */
}
} /* Finished scanning for the NH or OH in receptor. */
/*
* If 'ia' is an Oxygen atom, it could be a
* RECEPTOR H_BOND ACCEPTOR,
*/
} else if (hbond[ia] == 5) { /*A2*/
/*
* Scan from at most, (ia-20)th m/m atom, or ia-th (if ia<20)
* to (ia + 5)th m/m-atom
* determine number of atoms bonded to the oxygen
*/
nbond = 0;
for ( ib = from; ib <= to; ib++) {
if ( ib != ia ) {
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
dc[i] = coord[ia][i] - coord[ib][i];
rd2 += sq( dc[i]);
}
/*
for (i = 0; i < XYZ; i++) {
rd2 += sq(coord[ia][i] - coord[ib][i]);
}
*/
if (((rd2 < 3.61) && ((atom_type[ib] != hydrogen)&&(atom_type[ib]!=nonHB_hydrogen))) ||
((rd2 < 1.69) && ((atom_type[ib] == hydrogen)||(atom_type[ib]==nonHB_hydrogen)))) {
if (nbond == 2) {
(void) sprintf( message, "Found an H-bonding atom with three bonded atoms, atom serial number %d\n", ia + 1);
print_error( logFile, WARNING, message );
}
if (nbond == 1) {
nbond = 2;
i2 = ib;
}
if (nbond == 0) {
nbond = 1;
i1 = ib;
}
}
} /* ( ib != ia ) */
} /*ib-loop*/
/* if no bonds, something is wrong */
if (nbond == 0) {
(void) sprintf( message, "Oxygen atom found with no bonded atoms, atom serial number %d, atom_type %d\n", ia + 1, atom_type[ia]);
print_error( logFile, WARNING, message );
}
/* one bond: Carbonyl Oxygen O=C-X */
if (nbond == 1) {
/* calculate normalized carbonyl bond vector rvector[ia][] */
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = coord[ia][i]-coord[i1][i];
rd2 += sq(rvector[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", ia + 1, i1 + 1);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector[ia][i] *= inv_rd;
}
/* find a second atom (i2) bonded to carbonyl carbon (i1) */
for ( i2 = from; i2 <= to; i2++) {
if (( i2 != i1 ) && ( i2 != ia )) {
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
dc[i] = coord[i1][i] - coord[i2][i]; /*NEW*/
rd2 += sq( dc[i]);
}
if (((rd2 < 2.89) && (atom_type[i2] != hydrogen)) ||
((rd2 < 1.69) && (atom_type[i2] == hydrogen))) {
/* found one */
/* d[i] vector from carbon to second atom */
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
d[i] = coord[i2][i]-coord[i1][i];
rd2 += sq( d[i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", i1 + 1, i2 + 1);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
d[i] *= inv_rd;
}
/* C=O cross C-X gives the lone pair plane normal */
rvector2[ia][0] = rvector[ia][1]*d[2] - rvector[ia][2]*d[1];
rvector2[ia][1] = rvector[ia][2]*d[0] - rvector[ia][0]*d[2];
rvector2[ia][2] = rvector[ia][0]*d[1] - rvector[ia][1]*d[0];
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rd2 += sq(rvector2[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\n\n" );
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector2[ia][i] *= inv_rd;
}
}
}
}/*i2-loop*/
} /* endif nbond==1 */
/* two bonds: Hydroxyl or Ether Oxygen X1-O-X2 */
if (nbond == 2) {
/* disordered hydroxyl */
if ( ((atom_type[i1] == hydrogen) || (atom_type[i2] == hydrogen))
&& (atom_type[i1] != atom_type[i2]) && (disorder_h == TRUE) ) {
if ((atom_type[i1] == carbon)||(atom_type[i1] == arom_carbon)) ib = i1;
if ((atom_type[i2] == carbon)||(atom_type[i1] == arom_carbon)) ib = i2;
disorder[ia] = TRUE;
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = coord[ia][i] - coord[ib][i];
rd2 += sq(rvector[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", ia + 1, ib + 1);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector[ia][i] *= inv_rd;
}
} else {
/* not a disordered hydroxyl */
/* normalized X1 to X2 vector, defines lone pair plane */
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector2[ia][i] = coord[i2][i] - coord[i1][i];
rd2 += sq(rvector2[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", i1 + 1, i2 + 1);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector2[ia][i] *= inv_rd;
}
/* vector pointing between the lone pairs:
** front of the vector is the oxygen atom,
** X1->O vector dotted with normalized X1->X2 vector plus
** coords of X1 gives the point on the X1-X2 line for the
** back of the vector.
*/
rdot = 0.;
for (i = 0; i < XYZ; i++) {
rdot += (coord[ia][i] - coord[i1][i]) * rvector2[ia][i] ;
}
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = coord[ia][i] - ( (rdot*rvector2[ia][i]) + coord[i1][i] ) ;
rd2 += sq(rvector[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\n\n" );
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector[ia][i] *= inv_rd;
}
} /* end disordered hydroxyl */
} /* end two bonds to Oxygen */
/* NEW Directional N Acceptor */
} else if (hbond[ia] == 4) {/*A1*/
/*
** Scan from at most, (ia-20)th m/m atom, or ia-th (if ia<20)
** to (ia+5)th m/m-atom
** determine number of atoms bonded to the oxygen
*/
nbond = 0;
for ( ib = from; ib <= to; ib++) {
if ( ib != ia ) {
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
dc[i] = coord[ia][i] - coord[ib][i];
rd2 += sq( dc[i] );
}
/*
for (i = 0; i < XYZ; i++) {
rd2 += sq(coord[ia][i] - coord[ib][i]);
}
*/
if (((rd2 < 2.89) && ((atom_type[ib] != hydrogen)&&(atom_type[ib]!=nonHB_hydrogen))) ||
((rd2 < 1.69) && ((atom_type[ib] == hydrogen)||(atom_type[ib]==nonHB_hydrogen)))) {
if (nbond == 2) {
nbond = 3;
i3 = ib;
}
if (nbond == 1) {
nbond = 2;
i2 = ib;
}
if (nbond == 0) {
nbond = 1;
i1 = ib;
}
}
} /* ( ib != ia ) */
} /*ib-loop*/
/* if no bonds, something is wrong */
if (nbond == 0) {
(void) sprintf( message, "Nitrogen atom found with no bonded atoms, atom serial number %d\n",ia);
print_error( logFile, WARNING, message );
}
/* one bond: Azide Nitrogen :N=C-X */
if (nbond == 1) {
/* calculate normalized N=C bond vector rvector[ia][] */
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = coord[ia][i]-coord[i1][i];
rd2 += sq(rvector[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", ia, ib);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector[ia][i] *= inv_rd;
}
} /* endif nbond==1 */
/* two bonds: X1-N=X2 */
if (nbond == 2) {
/* normalized vector from Nitrogen to midpoint between X1 and X2 */
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = coord[ia][i]-(coord[i2][i]+coord[i1][i])/2.;
rd2 += sq(rvector[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", ia, ib);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector[ia][i] *= inv_rd;
}
} /* end two bonds for nitrogen*/
/* three bonds: X1,X2,X3 */
if (nbond == 3) {
/* normalized vector from Nitrogen to midpoint between X1, X2, and X3 */
rd2 = 0.;
for (i = 0; i < XYZ; i++) {
rvector[ia][i] = coord[ia][i]-(coord[i1][i]+coord[i2][i]+coord[i3][i])/3.;
rd2 += sq(rvector[ia][i]);
}
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\nAre the coordinates of atoms %d and %d the same?\n\n", ia, ib);
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
for (i = 0; i < XYZ; i++) {
rvector[ia][i] *= inv_rd;
}
} /* end three bonds for Nitrogen */
/* endNEW directional N Acceptor */
} /* end test for atom type */
} /* Do Next receptor atom... */
/********************************************
* End bond vector loop
********************************************/
} /* not use_vina_potential*/
for (k = 0; k < num_atom_maps + 1; k++) {
gridmap[k].energy_max = (double)-BIG;
gridmap[k].energy_min = (double)BIG;
}
(void) fprintf( logFile, "Beginning grid calculations.\n");
(void) fprintf( logFile, "\nCalculating %d grids over %d elements, around %d receptor atoms.\n\n", num_maps, num_grid_points_per_map, num_receptor_atoms);
(void) fflush( logFile);
/*____________________________________________________________________________
* Write out the correct grid_data '.fld' file_name at the head of each map
* file, to avoid centering errors in subsequent dockings...
* AutoDock can then check to see if the center of each map matches that
* specified in its parameter file...
*____________________________________________________________________________*/
/*change num_atom_maps +1 to num_atom_maps + 2 for new dsolvPE map*/
//for (k = 0; k < num_atom_maps+2; k++) {
for (k = 0; k < num_maps; k++) {
(void) fprintf( gridmap[k].map_fileptr, "GRID_PARAMETER_FILE %s\n", grid_param_fn );
(void) fprintf( gridmap[k].map_fileptr, "GRID_DATA_FILE %s\n", AVS_fld_filename);
(void) fprintf( gridmap[k].map_fileptr, "MACROMOLECULE %s\n", receptor_filename);
(void) fprintf( gridmap[k].map_fileptr, "SPACING %.3lf\n", spacing);
(void) fprintf( gridmap[k].map_fileptr, "NELEMENTS %d %d %d\n", nelements[X], nelements[Y], nelements[Z]);
(void) fprintf( gridmap[k].map_fileptr, "CENTER %.3lf %.3lf %.3lf\n", center[X], center[Y], center[Z]);
}
if (floating_grid) {
(void) fprintf( floating_grid_fileptr, "GRID_PARAMETER_FILE %s\n", grid_param_fn );
(void) fprintf( floating_grid_fileptr, "GRID_DATA_FILE %s\n", AVS_fld_filename);
(void) fprintf( floating_grid_fileptr, "MACROMOLECULE %s\n", receptor_filename);
(void) fprintf( floating_grid_fileptr, "SPACING %.3lf\n", spacing);
(void) fprintf( floating_grid_fileptr, "NELEMENTS %d %d %d\n", nelements[X], nelements[Y], nelements[Z]);
(void) fprintf( floating_grid_fileptr, "CENTER %.3lf %.3lf %.3lf\n", center[X], center[Y], center[Z]);
}
(void) fprintf( logFile, " Percent Estimated Time Time/this plane\n");
(void) fprintf( logFile, "XY-plane Z-coord Done Remaining Real, User, System\n");
(void) fprintf( logFile, " /Ang /sec /sec\n");
(void) fprintf( logFile, "________ ________ ________ ______________ __________________________\n\n");
/*
* Iterate over all grid points, Z( Y ( X ) ) (X is fastest)...
*/
ic = 0;
ctr = 0;
for (icoord[Z] = -ne[Z]; icoord[Z] <= ne[Z]; icoord[Z]++) {
/*
* c[0:2] contains the current grid point.
*/
c[Z] = ((double)icoord[Z]) * spacing;
grd_start = times( &tms_grd_start);
for (icoord[Y] = -ne[Y]; icoord[Y] <= ne[Y]; icoord[Y]++) {
c[Y] = ((double)icoord[Y]) * spacing;
for (icoord[X] = -ne[X]; icoord[X] <= ne[X]; icoord[X]++) {
c[X] = ((double)icoord[X]) * spacing;
//for (j = 0; j < num_atom_maps + 2; j++) {
for (j = 0; j < num_maps ; j++) {
if (gridmap[j].is_covalent == TRUE) {
/* Calculate the distance from the current
* grid point, c, to the covalent attachment point, covpos */
for (ii = 0; ii < XYZ; ii++) {
d[ii] = covpos[ii] - c[ii];
}
rcov = hypotenuse( d[X], d[Y], d[Z] );
rcov = rcov / covhalfwidth;
if (rcov < APPROX_ZERO) {
rcov = APPROX_ZERO;
}
gridmap[j].energy = covbarrier * (1. - exp(ln_half * rcov * rcov));
} else {
gridmap[j].energy = 0.; /*used to initialize to 'constant'for this gridmap*/
} /* is not covalent */
}
if (floating_grid) {
r_min = BIG;
}
if (not use_vina_potential){ //if vina_potential skip hbond stuff
/* Initialize Min Hbond variables for each new point*/
for (map_index = 0; map_index < num_atom_maps; map_index++){
hbondmin[map_index] = 999999.;
hbondmax[map_index] = -999999.;
hbondflag[map_index] = FALSE;
}
/* NEW2: Find Closest Hbond */
rmin=999999.;
closestH=0;
for (ia = 0; ia < num_receptor_atoms; ia++) {
if ((hbond[ia]==1)||(hbond[ia]==2)) {/*DS or D1*/
for (i = 0; i < XYZ; i++) {
d[i] = coord[ia][i] - c[i];
}
r = hypotenuse( d[X],d[Y],d[Z] );
if (r < rmin) {
rmin = r;
closestH = ia;
}
} /* Hydrogen test */
} /* ia loop */
/* END NEW2: Find Min Hbond */
}/* not use_vina_potential*/
/*
* Do all Receptor (protein, DNA, etc.) atoms...
*/
for (ia = 0; ia < num_receptor_atoms; ia++) {
/*
* Get distance, r, from current grid point, c, to this receptor atom, coord,
*/
for (i = 0; i < XYZ; i++) {
d[i] = coord[ia][i] - c[i];
}
r = hypotenuse( d[X], d[Y], d[Z]);
if (r < APPROX_ZERO) {
r = APPROX_ZERO;
}
inv_r = 1./r;
inv_rmax = 1./max(r, 0.5);
for (i = 0; i < XYZ; i++) {
d[i] *= inv_r;
}
/* make sure both lookup indices are in the tables */
indx_r = min(lookup(r), NDIEL-1);
int indx_n = min(lookup(r), NEINT-1);
if (floating_grid) {
/* Calculate the so-called "Floating Grid"... */
r_min = min(r, r_min);
}
/* elecPE is the next-to-last last grid map, i.e. electrostatics */
/* if use_vina_potential, electPE is 0 */
if (not use_vina_potential) {
if (dddiel) {
/* Distance-dependent dielectric... */
/*gridmap[elecPE].energy += charge[ia] * inv_r * et.r_epsilon_fn[indx_r];*/
/*apply the estat forcefield coefficient/weight here */
if(ET)
gridmap[elecPE].energy += charge[ia] * inv_rmax * epsilon[indx_r] * AD4.coeff_estat;
else
gridmap[elecPE].energy += charge[ia] * inv_rmax * et.r_epsilon_fn[indx_r] * AD4.coeff_estat;
} else {
/* Constant dielectric... */
/*gridmap[elecPE].energy += charge[ia] * inv_r * invdielcal;*/
gridmap[elecPE].energy += charge[ia] * inv_rmax * invdielcal * AD4.coeff_estat;
}
/*
* If distance from grid point to atom ia is too large,
* or if atom is a disordered hydrogen,
* add nothing to the grid-point's non-bond energy;
* just continue to next atom...
*/
if ( r > NBC) {
continue; /* onto the next atom... */
}
if ((atom_type[ia] == hydrogen) && (disorder[ia] == TRUE)) {
continue; /* onto the next atom... */
}
} /*not use_vina_potential*/
if (not use_vina_potential){
racc = 1.;
rdon = 1.;
/* NEW2 Hramp ramps in Hbond acceptor probes */
Hramp = 1.;
/* END NEW2 Hramp ramps in Hbond acceptor probes */
if (hbond[ia] == 2) {/*D1*/
/*
* ia-th receptor atom = Hydrogen ( 4 = H )
* => receptor H-bond donor, OH or NH.
* calculate racc for H-bond ACCEPTOR PROBES at this grid pt.
* ==== ======================
*/
cos_theta = 0.;
/*
* d[] = Unit vector from current grid pt to ia_th m/m atom.
* cos_theta = d dot rvector == cos(angle) subtended.
*/
for (i = 0; i < XYZ; i++) {
cos_theta -= d[i] * rvector[ia][i];
}
if (cos_theta <= 0.) {
/*
* H->current-grid-pt vector >= 90 degrees from
* N->H or O->H vector,
*/
racc = 0.;
} else {
/*
* racc = [cos(theta)]^2.0 for N-H
* racc = [cos(theta)]^4.0 for O-H,
*/
switch( rexp[ia] ) {
case 1:
default:
racc = cos_theta;
break;
case 2:
racc = cos_theta*cos_theta;
break;
case 4:
tmp = cos_theta*cos_theta;
racc = tmp*tmp;
break;
}
/* racc = pow( cos_theta, (double)rexp[ia]); */
/* NEW2 calculate dot product of bond vector with bond vector of best hbond */
if (ia == closestH) {
Hramp = 1.;
} else {
cos_theta = 0.;
for (i = 0; i < XYZ; i++) {
cos_theta += rvector[closestH][i] * rvector[ia][i];
}
cos_theta = min(cos_theta, 1.0);
cos_theta = max(cos_theta, -1.0);
theta = acos(cos_theta);
Hramp = 0.5-0.5*cos(theta * 120./90.);
} /* ia test for closestH */
/* END NEW2 calculate dot product of bond vector with bond vector of best hbond */
}
/* endif (atom_type[ia] == hydrogen) */
} else if (hbond[ia] == 4) {/*A1*/
/* NEW Directional N acceptor */
/*
** ia-th macromolecule atom = Nitrogen ( 4 = H )
** calculate rdon for H-bond Donor PROBES at this grid pt.
** ==== ======================
*/
cos_theta = 0.;
/*
** d[] = Unit vector from current grid pt to ia_th m/m atom.
** cos_theta = d dot rvector == cos(angle) subtended.
*/
for (i = 0; i < XYZ; i++) {
cos_theta -= d[i] * rvector[ia][i];
}
if (cos_theta <= 0.) {
/*
** H->current-grid-pt vector >= 90 degrees from
** X->N vector,
*/
rdon = 0.;
} else {
/*
** racc = [cos(theta)]^2.0 for H->N
*/
rdon = cos_theta*cos_theta;
}
/* endif (atom_type[ia] == nitrogen) */
/* end NEW Directional N acceptor */
} else if ((hbond[ia] == 5) && (disorder[ia] == FALSE)) {/*A2*/
/*
** ia-th receptor atom = Oxygen
** => receptor H-bond acceptor, oxygen.
*/
rdon = 0.;
/* check to see that probe is in front of oxygen, not behind */
cos_theta = 0.;
for (i = 0; i < XYZ; i++) {
cos_theta -= d[i] * rvector[ia][i];
}
/*
** t0 is the angle out of the lone pair plane, calculated
** as 90 deg - acos (vector to grid point DOT lone pair
** plane normal)
*/
t0 = 0.;
for (i = 0; i < XYZ; i++) {
t0 += d[i] * rvector2[ia][i];
}
if (t0 > 1.) {
t0 = 1.;
/*(void) sprintf( message, "I just prevented an attempt to take the arccosine of %f, a value greater than 1.\n", t0);
print_error( logFile, WARNING, message );Feb2012*/
} else if (t0 < -1.) {
t0 = -1.;
/*(void) sprintf( message, "I just prevented an attempt to take the arccosine of %f, a value less than -1.\n", t0);
print_error( logFile, WARNING, message );Feb2012*/
}
t0 = PI_halved - acos(t0);
/*
** ti is the angle in the lone pair plane, away from the
** vector between the lone pairs,
** calculated as (grid vector CROSS lone pair plane normal)
** DOT C=O vector - 90 deg
*/
cross[0] = d[1] * rvector2[ia][2] - d[2] * rvector2[ia][1];
cross[1] = d[2] * rvector2[ia][0] - d[0] * rvector2[ia][2];
cross[2] = d[0] * rvector2[ia][1] - d[1] * rvector2[ia][0];
rd2 = sq(cross[0]) + sq(cross[1]) + sq(cross[2]);
if (rd2 < APPROX_ZERO) {
if ((rd2 == 0.) && (warned == 'F')) {
(void) sprintf ( message, "Attempt to divide by zero was just prevented.\n\n" );
print_error( logFile, WARNING, message );
warned = 'T';
}
rd2 = APPROX_ZERO;
}
inv_rd = 1./sqrt(rd2);
ti = 0.;
for (i = 0; i < XYZ; i++) {
ti += cross[i] * inv_rd * rvector[ia][i];
}
/* rdon expressions from Goodford */
rdon = 0.;
if (cos_theta >= 0.) {
if (ti > 1.) {
ti = 1.;
/*(void) sprintf( message, "I just prevented an attempt to take the arccosine of %f, a value greater than 1.\n", ti);
print_error( logFile, WARNING, message );Feb2012*/
} else if (ti < -1.) {
ti = -1.;
/*(void) sprintf( message, "I just prevented an attempt to take the arccosine of %f, a value less than -1.\n", ti);
print_error( logFile, WARNING, message );Feb2012*/
}
ti = acos(ti) - PI_halved;
if (ti < 0.) {
ti = -ti;
}
/* the 2.0*ti can be replaced by (ti + ti) in: rdon = (0.9 + 0.1*sin(2.0*ti))*cos(t0);*/
rdon = (0.9 + 0.1*sin(ti + ti))*cos(t0);
} else if (cos_theta >= -0.34202) {
/* 0.34202 = cos (100 deg) */
rdon = 562.25*pow(0.116978 - sq(cos_theta), 3.)*cos(t0);
}
/* endif atom_type == oxygen, not disordered */
} else if ((hbond[ia] == 5) && (disorder[ia] == TRUE)) {/*A2*/
/* cylindrically disordered hydroxyl */
cos_theta = 0.;
for (i = 0; i < XYZ; i++) {
cos_theta -= d[i] * rvector[ia][i];
}
if (cos_theta > 1.) {
cos_theta = 1.;
/*(void) sprintf( message, "I just prevented an attempt to take the arccosine of %f, a value greater than 1.\n", cos_theta);
print_error( logFile, WARNING, message );Feb2012*/
} else if (cos_theta < -1.) {
cos_theta = -1.;
/*(void) sprintf( message, "I just prevented an attempt to take the arccosine of %f, a value less than -1.\n", cos_theta);
print_error( logFile, WARNING, message );Feb2012*/
}
theta = acos(cos_theta);
racc = 0.;
rdon = 0.;
if (theta <= 1.24791 + PI_halved) {
/* 1.24791 rad = 180 deg minus C-O-H bond angle,
** 108.5 deg */
rdon = pow(cos(theta - 1.24791), 4.);
racc = rdon;
}
} /* end atom_type tests used to set rdon and racc */
}//end not use_vina_potential
/*
* For each probe atom-type,
* Sum pairwise interactions between each probe
* at this grid point (c[0:2])
* and the current receptor atom, ia...
*/
for (map_index = 0; map_index < num_atom_maps; map_index++) {
/* We do not want to change the current energy value
* for any covalent maps, make sure iscovalent is
* false... */
maptypeptr = gridmap[map_index].type;
if (gridmap[map_index].is_covalent == FALSE) {
if ((not use_vina_potential) && (gridmap[map_index].is_hbonder == TRUE)) {
/* current map_index PROBE forms H-bonds... */
/* rsph ramps in angular dependence for distances with negative energy */
if(ET)
rsph = energy_lookup[atom_type[ia]][indx_n][map_index]/100.;
else
rsph = et.e_vdW_Hb[indx_n][atom_type[ia]][map_index]/100.;
rsph = max(rsph, 0.);
rsph = min(rsph, 1.);
if ((gridmap[map_index].hbond==3||gridmap[map_index].hbond==5) /*AS or A2*/
&&(hbond[ia]==1||hbond[ia]==2)){/*DS or D1*/
/* PROBE can be an H-BOND ACCEPTOR, */
if (disorder[ia] == FALSE ) {
if (ET)
gridmap[map_index].energy += energy_lookup[atom_type[ia]][indx_n][map_index] * Hramp * (racc + (1. - racc)*rsph);
else
gridmap[map_index].energy += et.e_vdW_Hb[indx_n][atom_type[ia]][map_index] * Hramp * (racc + (1. - racc)*rsph);
} else {
if (ET)
gridmap[map_index].energy += energy_lookup[hydrogen][max(0, indx_n - 110)][map_index] * Hramp * (racc + (1. - racc)*rsph);
else
gridmap[map_index].energy += et.e_vdW_Hb[max(0, indx_n - 110)][hydrogen][map_index] * Hramp * (racc + (1. - racc)*rsph);
}
} else if ((gridmap[map_index].hbond==4) /*A1*/
&&(hbond[ia]==1||hbond[ia]==2)) { /*DS,D1*/
if (ET)
hbondmin[map_index] = min( hbondmin[map_index],energy_lookup[atom_type[ia]][indx_n][map_index] * (racc+(1.-racc)*rsph));
else
hbondmin[map_index] = min( hbondmin[map_index],et.e_vdW_Hb[indx_n][atom_type[ia]][map_index] * (racc+(1.-racc)*rsph));
if (ET)
hbondmax[map_index] = max( hbondmax[map_index],energy_lookup[atom_type[ia]][indx_n][map_index] * (racc+(1.-racc)*rsph));
else
hbondmax[map_index] = max( hbondmax[map_index],et.e_vdW_Hb[indx_n][atom_type[ia]][map_index] * (racc+(1.-racc)*rsph));
hbondflag[map_index] = TRUE;
} else if ((gridmap[map_index].hbond==1||gridmap[map_index].hbond==2)&& (hbond[ia]>2)){/*DS,D1 vs AS,A1,A2*/
/* PROBE is H-BOND DONOR, */
if (ET)
temp_hbond_enrg = energy_lookup[atom_type[ia]][indx_n][map_index] * (rdon + (1. - rdon)*rsph);
else
temp_hbond_enrg = et.e_vdW_Hb[indx_n][atom_type[ia]][map_index] * (rdon + (1. - rdon)*rsph);
hbondmin[map_index] = min( hbondmin[map_index], temp_hbond_enrg);
hbondmax[map_index] = max( hbondmax[map_index], temp_hbond_enrg);
hbondflag[map_index] = TRUE;
} else {
/* hbonder PROBE-ia cannot form a H-bond..., */
if (ET)
gridmap[map_index].energy += energy_lookup[atom_type[ia]][indx_n][map_index];
else
gridmap[map_index].energy += et.e_vdW_Hb[indx_n][atom_type[ia]][map_index];
}
} else { /*end of is_hbonder*/
/* PROBE does not form H-bonds..., */
if (ET)
gridmap[map_index].energy += energy_lookup[atom_type[ia]][indx_n][map_index];
else
gridmap[map_index].energy += et.e_vdW_Hb[indx_n][atom_type[ia]][map_index];
}/* end hbonder tests */
if (not use_vina_potential){
/* add desolvation energy */
/* forcefield desolv coefficient/weight in sol_fn*/
gridmap[map_index].energy += gridmap[map_index].solpar_probe * vol[ia]*et.sol_fn[indx_r] +
(solpar[ia]+solpar_q*fabs(charge[ia]))*gridmap[map_index].vol_probe*et.sol_fn[indx_r];
}
} /* is not covalent */
}/* end of loop over all map_index values */
if (not use_vina_potential){
gridmap[dsolvPE].energy += solpar_q * vol[ia] * et.sol_fn[indx_r];
}
}/* ia loop, over all receptor atoms... */
/* adjust maps of hydrogen-bonding atoms by adding largest and
* smallest interaction of all 'pair-wise' interactions with receptor atoms
*/
if (not use_vina_potential){
for (map_index = 0; map_index < num_atom_maps; map_index++) {
if (hbondflag[map_index]) {
gridmap[map_index].energy += hbondmin[map_index];
gridmap[map_index].energy += hbondmax[map_index];
};
}
}
/*
* O U T P U T . . .
*
* Now output this grid point's energies to the maps:
*
*/
/*2 includes new dsolvPE*/
//for (k = 0; k < num_atom_maps+2; k++) {
for (k = 0; k < num_maps; k++) {
if (!problem_wrt) {
if (fabs(gridmap[k].energy) < PRECISION) {
fprintf_retval = fprintf(gridmap[k].map_fileptr, "0.\n");
} else {
fprintf_retval = fprintf(gridmap[k].map_fileptr, "%.3f\n", (float)round3dp(gridmap[k].energy));
}
if (fprintf_retval < 0) {
problem_wrt = TRUE;
}
}
gridmap[k].energy_max = max(gridmap[k].energy_max, gridmap[k].energy);
gridmap[k].energy_min = min(gridmap[k].energy_min, gridmap[k].energy);
}
if (floating_grid) {
if ((!problem_wrt)&&(fprintf(floating_grid_fileptr, "%.3f\n", (float)round3dp(r_min)) < 0)) {
problem_wrt = TRUE;
}
}
ctr++;
} /* icoord[X] loop */
} /* icoord[Y] loop */
if (problem_wrt) {
(void) sprintf( message, "Problems writing grid maps - there may not be enough disk space.\n");
print_error( logFile, WARNING, message );
}
grd_end = times( &tms_grd_end);
++nDone;
timeRemaining = (float)(grd_end - grd_start) * idct * (float)(n1[Z] - nDone);
(void) fprintf( logFile, " %6d %8.3lf %5.1lf%% ", icoord[Z], cgridmin[Z] + c[Z], percentdone*(double)++ic);
prHMSfixed( timeRemaining);
(void) fprintf( logFile, " ");
timesys( grd_end - grd_start, &tms_grd_start, &tms_grd_end, logFile);
(void) fflush( logFile);
} /* icoord[Z] loop */
#ifdef BOINCCOMPOUND
boinc_fraction_done(0.9);
#endif
/*____________________________________________________________________________
* Print a summary of extrema-values from the atomic-affinity and
* electrostatics grid-maps,
*____________________________________________________________________________*/
(void) fprintf(logFile, "\nGrid\tAtom\tMinimum \tMaximum\n");
(void) fprintf(logFile, "Map \tType\tEnergy \tEnergy \n");
(void) fprintf(logFile, "\t\t(kcal/mol)\t(kcal/mol)\n");
(void) fprintf(logFile, "____\t____\t_____________\t_____________\n");
for (i = 0; i < num_atom_maps; i++) {
(void) fprintf( logFile, " %d\t %s\t %6.2lf\t%9.2le\n", i + 1, gridmap[i].type, gridmap[i].energy_min, gridmap[i].energy_max);
}
if (not use_vina_potential){
(void) fprintf( logFile, " %d\t %c\t %6.2lf\t%9.2le\tElectrostatic Potential\n", num_atom_maps + 1, 'e', gridmap[elecPE].energy_min, gridmap[i].energy_max);
(void) fprintf( logFile, " %d\t %c\t %6.2lf\t%9.2le\tDesolvation Potential\n", num_atom_maps + 2, 'd', gridmap[dsolvPE].energy_min, gridmap[i+1].energy_max);
(void) fprintf( logFile, "\n\n * Note: Every pairwise-atomic interaction was clamped at %.2f\n\n", EINTCLAMP);
}
/*
* Close all files, ************************************************************
*/
//for (i = 0; i < num_atom_maps+2; i++) {
for (i = 0; i < num_maps; i++) {
(void) fclose( gridmap[i].map_fileptr);
}
if (floating_grid) {
(void) fclose(floating_grid_fileptr);
}
/* Free up the memory allocated to the gridmap objects... */
free(gridmap);
(void) fprintf( logFile, "\n%s: Successful Completion.\n", programname); // do not tinker with this, used by ADT and by automated tests
job_end = times( &tms_job_end);
timesyshms( job_end - job_start, &tms_job_start, &tms_job_end, logFile);
(void) fclose( logFile);
#ifdef BOINCCOMPOUND
boinc_fraction_done(1.);
#endif
#ifdef BOINC
boinc_finish(0); /* should not return */
#endif
return EXIT_SUCCESS; // POSIX, defined in stdlib.h
}
/*
* End of main function.
*/
static int get_rec_index(const char key[]) {
ParameterEntry * found_parm;
found_parm = apm_find(key);
if (found_parm != NULL)
return found_parm->rec_index;
return -1;
}
static int get_map_index(const char key[]) {
ParameterEntry * found_parm;
found_parm = apm_find(key);
if (found_parm != NULL)
return found_parm->map_index;
return -1;
}
#ifdef BOINC
/* Dummy graphics API entry points.
* This app does not do graphics, but it still must provide these callbacks.
*/
void app_graphics_render(int xs, int ys, double time_of_day) {}
void app_graphics_reread_prefs(){}
void boinc_app_mouse_move(int x, int y, bool left, bool middle, bool right ){}
void boinc_app_mouse_button(int x, int y, int which, bool is_down){}
void boinc_app_key_press(int wParam, int lParam){}
void boinc_app_key_release(int wParam, int lParam){}
#endif
/* Windows entry point WinMain() */
#ifdef NOTNEEDED
#ifdef _WIN32
/*******************************************************
* Windows: Unix applications begin with main() while Windows applications
* begin with WinMain, so this just makes WinMain() process the command line
* and then invoke main()
*/
int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst,
LPSTR Args, int WinMode)
{
LPSTR command_line;
char* argv[100];
int argc;
command_line = GetCommandLine();
argc = parse_command_line( command_line, argv );
return main(argc, argv);
}
#endif
#endif
/*
* EOF
*/
|