File: module_grouper.cc

package info (click to toggle)
autofdo 0.18-2
  • links: PTS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 92,568 kB
  • sloc: cpp: 26,830; sh: 12,538; makefile: 344; ansic: 134; python: 95
file content (502 lines) | stat: -rw-r--r-- 17,981 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "module_grouper.h"

#include "gflags/gflags.h"
#include "base/common.h"
#include "symbolize/bytereader-inl.h"
#include "symbolize/elf_reader.h"
#include "symbol_map.h"

DEFINE_int32(cutoff_percent, 85,
             "The module group will stop when total number of integrated call "
             "edge counts sums to more than this percentage of total call edge "
             "count");
DEFINE_int32(max_ggc_memory, 3 << 20,
             "The maximum ggc memory (in KB) of each module. This indicates "
             "how much memory GCC can be used to build each module. The "
             "default value is 3GB because hip-forge cluster enforce memory "
             "consumption to be less than 3GB");

namespace autofdo {
// in_func is not a const pointer, but it's not modified in the function.
void Function::AddInEdgeCount(int64 count, Function *in_func) {
  std::pair<EdgeCount::iterator, bool> ret = in_edge_count.insert(
      EdgeCount::value_type(in_func, 0));
  ret.first->second += count;
  total_in_count += count;
}

// out_func is not a const pointer, but it's not modified in the function.
void Function::AddOutEdgeCount(int64 count, Function *out_func) {
  std::pair<EdgeCount::iterator, bool> ret = out_edge_count.insert(
      EdgeCount::value_type(out_func, 0));
  ret.first->second += count;
  total_out_count += count;
}

ModuleGrouper::ModuleGrouper(const SymbolMap *symbol_map)
      : total_count_(0), symbol_map_(symbol_map) {}

std::unique_ptr<ModuleGrouper> ModuleGrouper::GroupModule(
      const string &binary,
      const string &section_prefix,
      const SymbolMap *symbol_map) {
  std::unique_ptr<ModuleGrouper> grouper(new ModuleGrouper(symbol_map));
  grouper->ReadModuleOptions(binary, section_prefix);
  if (grouper->module_map().size() == 0) {
    LOG(WARNING) << "Cannot read compilation info from binary. "
                 << "Please use -frecord-compilation-info-in-elf when "
                 << "building the binary";
  } else {
    grouper->Group();
  }
  return grouper;
}

void ModuleGrouper::Group() {
  BuildGraph();
  CallEdge max_edge;
  int64 target_accumulate_count = total_count_ * FLAGS_cutoff_percent / 100;
  map<string, set<string> > legacy_group;

  // Reads the legacy group from inline stacks (symbol_map.map())
  for (const auto &name_symbol : symbol_map_->map()) {
    const Symbol *symbol = name_symbol.second;
    if (symbol->IsFromHeader()) {
      continue;
    }
    const string base_module_name = symbol->ModuleName();
    std::vector<const Symbol *> queue;
    queue.push_back(symbol);
    while (!queue.empty()) {
      const Symbol *s = queue.back();
      queue.pop_back();
      if (s->total_count == 0) {
        continue;
      }
      for (const auto &pos_symbol : s->callsites) {
        queue.push_back(pos_symbol.second);
      }
      // If we don't have module info for the symbol, try to find it from
      // top level symbol map.
      if (s->ModuleName().empty()) {
        s = symbol_map_->GetSymbolByName(s->info.func_name);
        if (s == nullptr) {
          continue;
        }
      }
      if (s->IsFromHeader() || s->ModuleName() == base_module_name) {
        continue;
      }
      legacy_group[base_module_name].insert(s->ModuleName());
    }
  }

  // Updates the legacy group to the new module group
  for (const auto &name_modules : legacy_group) {
    if (module_map_.find(name_modules.first) == module_map_.end()) {
      LOG(ERROR) << "Primary module " << name_modules.first
                 << " is not found in the profile binary";
      continue;
    }
    for (const auto &name : name_modules.second) {
      if (module_map_.find(name) != module_map_.end()) {
        module_map_[name].is_exported = true;
        module_map_[name_modules.first].aux_modules.insert(name);
      }
    }
  }

  for (int64 accumulate_count = GetMaxEdge(&max_edge);
       accumulate_count < target_accumulate_count;
       accumulate_count += GetMaxEdge(&max_edge)) {
    if (edge_map_[max_edge] == 0) {
      break;
    }
    // Check if module should be integrated as aux-module.
    if (ShouldIntegrate(max_edge.from->module, max_edge.to->module)) {
      IntegrateEdge(max_edge);
    } else {
      // The edge has been processed and edge count should been decreased so
      // that it will not be processed any more.
      AddEdgeCount(max_edge, edge_map_[max_edge] * -1);
    }
  }
}

string ModuleGrouper::ReplaceHeaderToCC(string header_name) const {
  // Header file name is something like: ./mustang/hit-iterator.h
  // We change it to: mustang/hit-iterator.cc
  if (header_name.size() < 5 || header_name.substr(0, 2) != "./"
      || header_name.substr(header_name.size() - 2) != ".h") {
    return header_name;
  }
  return header_name.substr(2, header_name.size() - 3) + "cc";
}

string ModuleGrouper::UpdateModuleMap(string name) {
  if (module_map_.find(name) == module_map_.end()) {
    string new_name = ReplaceHeaderToCC(name);
    if (module_map_.find(new_name) != module_map_.end()) {
        return new_name;
    } else {
      module_map_.insert(ModuleMap::value_type(name, Module(true)));
    }
  }
  return name;
}

void ModuleGrouper::RecursiveBuildGraph(const string &caller_name,
                                        const Symbol *symbol) {
  const Symbol *caller = symbol_map_->GetSymbolByName(caller_name);
  CHECK(caller != NULL);
  for (const auto &pos_count : symbol->pos_counts) {
    for (const auto &target_count : pos_count.second.target_map) {
      const string &callee_name = target_count.first;
      const Symbol *callee = symbol_map_->GetSymbolByName(callee_name);
      if (callee == NULL || caller == callee) {
        continue;
      }
      total_count_ += target_count.second;
      string caller_module_name = UpdateModuleMap(caller->ModuleName());
      string callee_module_name = UpdateModuleMap(callee->ModuleName());
      std::pair<FunctionMap::iterator, bool> caller_ret =
          function_map_.insert(FunctionMap::value_type(
          caller_name, Function(caller_name, caller_module_name)));
      std::pair<FunctionMap::iterator, bool> callee_ret =
          function_map_.insert(FunctionMap::value_type(
          callee_name, Function(callee_name, callee_module_name)));
      AddEdgeCount(
          CallEdge(&(caller_ret.first->second), &(callee_ret.first->second)),
          target_count.second);
    }
  }
  for (const auto &callsite_symbol : symbol->callsites) {
    // For the inlined functions, the call will be attributed to the outermost
    // symbol, i.e. the symbol that is emitted in the profiled binary.
    RecursiveBuildGraph(caller_name, callsite_symbol.second);
  }
}

void ModuleGrouper::BuildGraph() {
  for (const auto &name_symbol : symbol_map_->map()) {
    RecursiveBuildGraph(name_symbol.first, name_symbol.second);
  }
}

void ModuleGrouper::AddEdgeCount(const CallEdge &edge, int64 count) {
  edge.from->AddOutEdgeCount(count, edge.to);
  edge.to->AddInEdgeCount(count, edge.from);
  std::pair<EdgeMap::iterator, bool> ret = edge_map_.insert(
      EdgeMap::value_type(edge, 0));
  ret.first->second += count;
}

// Integrates edge.to into edge.from.
// The integration has two steps:
// 1. Integrates the node (function) in the call graph.
//   Clones the the callees of edge.to to edge.from (with scaled count),
//   and decreases the counts in for edge.to's callee accordingly.
// 2. Integrates the module.
//   2.1 Adds edge.to.module.aux_modules to edge.from.module
//   2.2 Sets the is_exported field of edge.to.module
void ModuleGrouper::IntegrateEdge(const CallEdge &edge) {
  int64 count = edge_map_[edge];
  int64 total = edge.to->total_in_count;

  AddEdgeCount(edge, count * -1);
  for (auto &callee_count : edge.to->out_edge_count) {
    int64 scaled_count = callee_count.second * count / total;
    if (scaled_count > 0) {
      // Only add the scaled_count for non-recursive functions.
      if (callee_count.first != edge.from) {
        AddEdgeCount(CallEdge(edge.from, callee_count.first),
                     scaled_count);
      }
      // Decrease the scaled_count from the original callee.
      AddEdgeCount(CallEdge(edge.to, callee_count.first), scaled_count * -1);
    }
  }

  // Add the callee's module as the caller and parent module's aux-module.
  ModuleMap::iterator from_module_iter = module_map_.find(edge.from->module);
  ModuleMap::iterator to_module_iter = module_map_.find(edge.to->module);
  if (from_module_iter->first == to_module_iter->first) {
    return;
  }
  to_module_iter->second.is_exported = true;
  std::set<string> primary_modules = from_module_iter->second.parent_modules;
  primary_modules.insert(from_module_iter->first);
  for (const auto &primary_module : primary_modules) {
    if (to_module_iter->first == primary_module) {
      continue;
    }
    if (!to_module_iter->second.is_fake) {
      module_map_[primary_module].aux_modules.insert(to_module_iter->first);
      to_module_iter->second.parent_modules.insert(primary_module);
    }
    for (const auto &aux_module : to_module_iter->second.aux_modules) {
      if (aux_module != primary_module) {
        module_map_[primary_module].aux_modules.insert(aux_module);
        module_map_[aux_module].parent_modules.insert(primary_module);
      }
    }
  }
}

uint32 ModuleGrouper::GetTotalMemory(const set<string> &modules) {
  uint32 ret = 0;
  for (const auto &module : modules) {
    ret += module_map_[module].ggc_memory_in_kb;
  }
  return ret;
}

// Data structure and content copied from gcc.
struct opt_desc {
  const char *opt_str;
  const char *opt_neg_str;
  bool default_val;
};

static struct opt_desc force_match_opts[] = {
  { "-fexceptions", "-fno-exceptions", true },
  { "-fsized-delete", "-fno-sized-delete", false },
  { "-frtti", "-fno-rtti", true },
  { "-fstrict-aliasing", "-fno-strict-aliasing", true },
  { "-fsigned-char", "-funsigned-char", true},
};

static bool HasIncompatibleArg(const Module &m1, const Module &m2) {
  for (int i = 0; i < sizeof(force_match_opts)/sizeof(opt_desc); i++) {
    if (m1.flag_values.find(force_match_opts[i].opt_str)->second !=
        m2.flag_values.find(force_match_opts[i].opt_str)->second) {
      return false;
    }
  }
  return true;
}

bool ModuleGrouper::ShouldIntegrate(const string &from_module,
                                    const string &to_module) {
  if (!module_map_[from_module].is_valid
      || !module_map_[to_module].is_valid) {
    return false;
  }
  if (skipped_modules_.find(to_module) != skipped_modules_.end()) {
    return false;
  }
  if (from_module == to_module) {
    return true;
  }
  // We preprocess faked module first because it does not have lang field and
  // flag_values fields.
  if (!module_map_[to_module].is_fake && !module_map_[from_module].is_fake) {
    if ((module_map_[from_module].lang & 0xffff) !=
        (module_map_[to_module].lang & 0xffff)) {
      return false;
    }
    if (!HasIncompatibleArg(module_map_[from_module], module_map_[to_module])) {
      return false;
    }
  }
  std::set<string> from_modules = module_map_[from_module].parent_modules;
  from_modules.insert(from_module);
  for (const auto &module : from_modules) {
    std::set<string> modules;
    modules.insert(module);
    modules.insert(to_module);
    modules.insert(module_map_[module].aux_modules.begin(),
                   module_map_[module].aux_modules.end());
    modules.insert(module_map_[to_module].aux_modules.begin(),
                   module_map_[to_module].aux_modules.end());
    if (GetTotalMemory(modules) > FLAGS_max_ggc_memory) {
      return false;
    }
  }
  return true;
}

int64 ModuleGrouper::GetMaxEdge(CallEdge *edge) {
  // TODO(dehao): use more effective approach to search.
  int64 max_count = 0;
  for (const auto &edge_count : edge_map_) {
    if (edge_count.second > max_count ||
        (edge_count.second == max_count && edge_count.first < *edge)) {
      max_count = edge_count.second;
      *edge = edge_count.first;
    }
  }
  return max_count;
}

// Function that read in the options from the elf section.
void ModuleGrouper::ReadModuleOptions(const string &binary,
                                      const string &section_prefix) {
  ReadOptionsByType(binary, section_prefix, QUOTE_PATHS);
  ReadOptionsByType(binary, section_prefix, BRACKET_PATHS);
  ReadOptionsByType(binary, section_prefix, SYSTEM_PATHS);
  ReadOptionsByType(binary, section_prefix, CPP_DEFINES);
  ReadOptionsByType(binary, section_prefix, CPP_INCLUDES);
  ReadOptionsByType(binary, section_prefix, CL_ARGS);
  ReadOptionsByType(binary, section_prefix, LIPO_INFO);
}

// Reads in command-line options from the elf section by a specific type.
void ModuleGrouper::ReadOptionsByType(const string &binary,
                                      const string &section_prefix,
                                      OptionType type) {
  // Reads from the elf .note sections to get the option info
  // stored by the compiler.
  ElfReader elf(binary);
  const char *sect_data = NULL;
  size_t section_size;
  switch (type) {
  case QUOTE_PATHS:
    sect_data = elf.GetSectionByName(
        section_prefix + ".quote_paths", &section_size);
    break;
  case BRACKET_PATHS:
    sect_data = elf.GetSectionByName(
        section_prefix + ".bracket_paths", &section_size);
    break;
  case SYSTEM_PATHS:
    sect_data = elf.GetSectionByName(
        section_prefix + ".system_paths", &section_size);
    break;
  case CPP_DEFINES:
    sect_data = elf.GetSectionByName(
        section_prefix + ".cpp_defines", &section_size);
    break;
  case CPP_INCLUDES:
    sect_data = elf.GetSectionByName(
        section_prefix + ".cpp_includes", &section_size);
    break;
  case CL_ARGS:
    sect_data = elf.GetSectionByName(
        section_prefix + ".cl_args", &section_size);
    break;
  case LIPO_INFO:
    sect_data = elf.GetSectionByName(
        section_prefix + ".lipo_info", &section_size);
    break;
  }

  if (!sect_data || section_size == 0)
    return;

  // Iterates all sections to read in compilation info stored by compiler.
  for (const char *curr = sect_data; curr < sect_data + section_size;) {
    const char *module_name = curr;
    const char *num_ptr = curr + strlen(module_name) + 1;
    ByteReader reader(ENDIANNESS_LITTLE);
    size_t len;
    uint64 option_num =
        (type == LIPO_INFO) ? 0 : reader.ReadUnsignedLEB128(num_ptr, &len);
    std::pair<ModuleMap::iterator, bool> status = module_map_.insert(
        ModuleMap::value_type(module_name, Module()));
    Module *module = &status.first->second;
    bool is_duplicated = false;
    switch (type) {
    case QUOTE_PATHS:
      if (module->num_quote_paths > 0) {
        is_duplicated = true;
      } else {
        module->num_quote_paths = option_num;
      }
      break;
    case SYSTEM_PATHS:
      if (!sect_data || section_size == 0)
        return;

      if (module->num_system_paths > 0) {
        is_duplicated = true;
      } else {
        module->num_system_paths = option_num;
      }
      break;
    case BRACKET_PATHS:
      if (module->num_bracket_paths > 0) {
        is_duplicated = true;
      } else {
        module->num_bracket_paths = option_num;
      }
      break;
    case CPP_DEFINES:
      if (module->num_cpp_defines > 0) {
        is_duplicated = true;
      } else {
        module->num_cpp_defines = option_num;
      }
      break;
    case CPP_INCLUDES:
      if (module->num_cpp_includes > 0) {
        is_duplicated = true;
      } else {
        module->num_cpp_includes = option_num;
      }
      break;
    case CL_ARGS:
      if (module->num_cl_args > 0) {
        is_duplicated = true;
      } else {
        module->num_cl_args = option_num;
      }
      break;
    case LIPO_INFO:
      size_t len1, len2;
      module->lang = reader.ReadUnsignedLEB128(num_ptr, &len1);
      module->ggc_memory_in_kb = reader.ReadUnsignedLEB128(num_ptr + len1,
                                                           &len2);
      len = len1 + len2;
      break;
    }

    for (int j = 0; j < sizeof(force_match_opts) / sizeof(opt_desc); j++) {
      module->flag_values[force_match_opts[j].opt_str] =
          force_match_opts[j].default_val;
    }

    curr = curr + strlen(curr) + 1 + len;
    for (int j = 0; j < option_num; j++) {
      if (!is_duplicated) {
        module->options.push_back(Option(type, curr));
        if (type == CL_ARGS) {
          for (int k = 0; k < sizeof(force_match_opts) / sizeof(opt_desc);
               k++) {
            // Checks if flag matches with the force_match_opts, if none is
            // matching, this flag does not need to be checked.
            if (!strcmp(force_match_opts[k].opt_str, curr)) {
              module->flag_values[force_match_opts[k].opt_str] = true;
            } else if (!strcmp(force_match_opts[k].opt_neg_str, curr)) {
              module->flag_values[force_match_opts[k].opt_str] = false;
            }
          }
        }
      } else if (module->options[module->options.size() - option_num + j].second
                 != curr) {
        module->is_valid = false;
      }
      curr += strlen(curr) + 1;
    }
    if (!module->is_valid) {
      LOG(ERROR) << "Duplicated module(" << module_name
                 << ") has inconsistent option data, it will not be included "
                 << "in module grouping";
    }
  }
}
}  // namespace autofdo