1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
|
/* median.c: median cut - reducing a high color bitmap to certain number of colors
Copyright (C) 2001, 2002 Martin Weber
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA. */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif /* Def: HAVE_CONFIG_H */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "message.h"
#include "xstd.h"
#include "quantize.h"
#define MAXNUMCOLORS 256
#if 0
#define R_SCALE
#define G_SCALE
#define B_SCALE
#else
/* scale RGB distances by *2,*3,*1 */
#define R_SCALE <<1
#define G_SCALE *3
#define B_SCALE
#endif
#define BITS_IN_SAMPLE 8
#define R_SHIFT (BITS_IN_SAMPLE - PRECISION_R)
#define G_SHIFT (BITS_IN_SAMPLE - PRECISION_G)
#define B_SHIFT (BITS_IN_SAMPLE - PRECISION_B)
typedef struct {
/* The bounds of the box (inclusive); expressed as histogram indexes */
int Rmin, Rmax;
int Gmin, Gmax;
int Bmin, Bmax;
/* The volume (actually 2-norm) of the box */
int volume;
/* The number of nonzero histogram cells within this box */
long colorcount;
} box, *boxptr;
static void zero_histogram_rgb(Histogram histogram)
{
int r, g, b;
for (r = 0; r < HIST_R_ELEMS; r++)
for (g = 0; g < HIST_G_ELEMS; g++)
for (b = 0; b < HIST_B_ELEMS; b++)
histogram[r * MR + g * MG + b] = 0;
}
static void generate_histogram_rgb(Histogram histogram, bitmap_type *image,
const color_type *ignoreColor)
{
unsigned char *src = image->bitmap;
int num_elems;
ColorFreq *col;
num_elems = BITMAP_WIDTH(*image)
* BITMAP_HEIGHT(*image);
zero_histogram_rgb(histogram);
switch (BITMAP_PLANES(*image))
{
case 3:
while (num_elems--)
{
/* If we have an ignorecolor, skip it. */
if (ignoreColor)
{
if ((src[0] == ignoreColor->r)
&& (src[1] == ignoreColor->g)
&& (src[2] == ignoreColor->b))
{
src += 3;
continue;
}
}
col = &histogram[(src[0] >> R_SHIFT) * MR
+ (src[1] >> G_SHIFT) * MG
+ (src[2] >> B_SHIFT)];
(*col)++;
src += 3;
}
break;
case 1:
while (--num_elems >= 0)
{
if (ignoreColor && src[num_elems] == ignoreColor->r) continue;
col = &histogram[(src[num_elems] >> R_SHIFT) * MR
+ (src[num_elems] >> G_SHIFT) * MG
+ (src[num_elems] >> B_SHIFT)];
(*col)++;
}
break;
default:
/* To avoid compiler warning */ ;
}
}
static boxptr find_biggest_volume (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns 0 if no splittable boxes remain */
{
boxptr boxp;
int i;
int maxv = 0;
boxptr which = 0;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
if (boxp->volume > maxv) {
which = boxp;
maxv = boxp->volume;
}
}
return which;
}
static void update_box_rgb(Histogram histogram, boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume and population */
{
ColorFreq *histp;
int R, G, B;
int Rmin, Rmax, Gmin, Gmax, Bmin, Bmax;
int dist0, dist1, dist2;
long ccount;
Rmin = boxp->Rmin;
Rmax = boxp->Rmax;
Gmin = boxp->Gmin;
Gmax = boxp->Gmax;
Bmin = boxp->Bmin;
Bmax = boxp->Bmax;
if (Rmax > Rmin)
for (R = Rmin; R <= Rmax; R++)
for (G = Gmin; G <= Gmax; G++) {
histp = histogram + R * MR + G * MG + Bmin;
for (B = Bmin; B <= Bmax; B++)
if (*histp++ != 0) {
boxp->Rmin = Rmin = R;
goto have_Rmin;
}
}
have_Rmin:
if (Rmax > Rmin)
for (R = Rmax; R >= Rmin; R--)
for (G = Gmin; G <= Gmax; G++) {
histp = histogram + R * MR + G * MG + Bmin;
for (B = Bmin; B <= Bmax; B++)
if (*histp++ != 0) {
boxp->Rmax = Rmax = R;
goto have_Rmax;
}
}
have_Rmax:
if (Gmax > Gmin)
for (G = Gmin; G <= Gmax; G++)
for (R = Rmin; R <= Rmax; R++) {
histp = histogram + R * MR + G * MG + Bmin;
for (B = Bmin; B <= Bmax; B++)
if (*histp++ != 0) {
boxp->Gmin = Gmin = G;
goto have_Gmin;
}
}
have_Gmin:
if (Gmax > Gmin)
for (G = Gmax; G >= Gmin; G--)
for (R = Rmin; R <= Rmax; R++) {
histp = histogram + R * MR + G * MG + Bmin;
for (B = Bmin; B <= Bmax; B++)
if (*histp++ != 0) {
boxp->Gmax = Gmax = G;
goto have_Gmax;
}
}
have_Gmax:
if (Bmax > Bmin)
for (B = Bmin; B <= Bmax; B++)
for (R = Rmin; R <= Rmax; R++) {
histp = histogram + R * MR + Gmin * MG + B;
for (G = Gmin; G <= Gmax; G++, histp += MG)
if (*histp != 0) {
boxp->Bmin = Bmin = B;
goto have_Bmin;
}
}
have_Bmin:
if (Bmax > Bmin)
for (B = Bmax; B >= Bmin; B--)
for (R = Rmin; R <= Rmax; R++) {
histp = histogram + R * MR + Gmin * MG + B;
for (G = Gmin; G <= Gmax; G++, histp += MG)
if (*histp != 0) {
boxp->Bmax = Bmax = B;
goto have_Bmax;
}
}
have_Bmax:
/* Update box volume.
* We use 2-norm rather than real volume here; this biases the method
* against making long narrow boxes, and it has the side benefit that
* a box is splittable iff norm > 0.
* Since the differences are expressed in histogram-cell units,
* we have to shift back to JSAMPLE units to get consistent distances;
* after which, we scale according to the selected distance scale factors.
*/
dist0 = Rmax - Rmin;
dist1 = Gmax - Gmin;
dist2 = Bmax - Bmin;
boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
/* Now scan remaining volume of box and compute population */
ccount = 0;
for (R = Rmin; R <= Rmax; R++)
for (G = Gmin; G <= Gmax; G++) {
histp = histogram + R * MR + G * MG + Bmin;
for (B = Bmin; B <= Bmax; B++, histp++)
if (*histp != 0) {
ccount++;
}
}
boxp->colorcount = ccount;
}
static int median_cut_rgb (Histogram histogram, boxptr boxlist, int numboxes,
int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int n, lb;
int R, G, B, cmax;
boxptr b1, b2;
while (numboxes < desired_colors) {
/* Select box to split.
* Current algorithm: by population for first half, then by volume.
*/
b1 = find_biggest_volume (boxlist, numboxes);
if (b1 == 0) /* no splittable boxes left! */
break;
b2 = boxlist + numboxes; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->Rmax = b1->Rmax;
b2->Gmax = b1->Gmax;
b2->Bmax = b1->Bmax;
b2->Rmin = b1->Rmin;
b2->Gmin = b1->Gmin;
b2->Bmin = b1->Bmin;
/* Choose which axis to split the box on.
* Current algorithm: longest scaled axis.
* See notes in update_box about scaling distances.
*/
R = b1->Rmax - b1->Rmin;
G = b1->Gmax - b1->Gmin;
B = b1->Bmax - b1->Bmin;
/* We want to break any ties in favor of green, then red, blue last.
*/
cmax = G;
n = 1;
if (R > cmax) {
cmax = R;
n = 0;
}
if (B > cmax) {
n = 2;
}
/* Choose split point along selected axis, and update box bounds.
* Current algorithm: split at halfway point.
* (Since the box has been shrunk to minimum volume,
* any split will produce two nonempty subboxes.)
* Note that lb value is max for lower box, so must be < old max.
*/
switch (n) {
case 0:
lb = (b1->Rmax + b1->Rmin) / 2;
b1->Rmax = lb;
b2->Rmin = lb + 1;
break;
case 1:
lb = (b1->Gmax + b1->Gmin) / 2;
b1->Gmax = lb;
b2->Gmin = lb + 1;
break;
case 2:
lb = (b1->Bmax + b1->Bmin) / 2;
b1->Bmax = lb;
b2->Bmin = lb + 1;
break;
}
/* Update stats for boxes */
update_box_rgb(histogram, b1);
update_box_rgb(histogram, b2);
numboxes++;
}
return numboxes;
}
static void compute_color_rgb(QuantizeObj *quantobj, Histogram histogram,
boxptr boxp, int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
/* Current algorithm: mean weighted by pixels (not colors) */
/* Note it is important to get the rounding correct! */
ColorFreq *histp;
int R, G, B;
int Rmin, Rmax;
int Gmin, Gmax;
int Bmin, Bmax;
unsigned long count;
unsigned long total = 0;
unsigned long Rtotal = 0;
unsigned long Gtotal = 0;
unsigned long Btotal = 0;
Rmin = boxp->Rmin;
Rmax = boxp->Rmax;
Gmin = boxp->Gmin;
Gmax = boxp->Gmax;
Bmin = boxp->Bmin;
Bmax = boxp->Bmax;
for (R = Rmin; R <= Rmax; R++)
for (G = Gmin; G <= Gmax; G++) {
histp = histogram + R * MR + G * MG + Bmin;
for (B = Bmin; B <= Bmax; B++) {
if ((count = *histp++) != 0) {
total += count;
Rtotal += ((R << R_SHIFT) + ((1 << R_SHIFT) >> 1)) * count;
Gtotal += ((G << G_SHIFT) + ((1 << G_SHIFT) >> 1)) * count;
Btotal += ((B << B_SHIFT) + ((1 << B_SHIFT) >> 1)) * count;
}
}
}
quantobj->cmap[icolor].r = (unsigned char) ((Rtotal + (total >> 1)) / total);
quantobj->cmap[icolor].g = (unsigned char) ((Gtotal + (total >> 1)) / total);
quantobj->cmap[icolor].b = (unsigned char) ((Btotal + (total >> 1)) / total);
quantobj->freq[icolor] = total;
}
static void select_colors_rgb(QuantizeObj *quantobj, Histogram histogram)
/* Master routine for color selection */
{
boxptr boxlist;
int numboxes;
int desired = quantobj->desired_number_of_colors;
int i;
/* Allocate workspace for box list */
XMALLOC (boxlist, desired * sizeof(box));
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].Rmin = 0;
boxlist[0].Rmax = (1 << PRECISION_R) - 1;
boxlist[0].Gmin = 0;
boxlist[0].Gmax = (1 << PRECISION_G) - 1;
boxlist[0].Bmin = 0;
boxlist[0].Bmax = (1 << PRECISION_B) - 1;
/* Shrink it to actually-used volume and set its statistics */
update_box_rgb(histogram, boxlist);
/* Perform median-cut to produce final box list */
numboxes = median_cut_rgb(histogram, boxlist, numboxes, desired);
quantobj->actual_number_of_colors = numboxes;
/* Compute the representative color for each box, fill colormap */
for (i = 0; i < numboxes; i++)
compute_color_rgb(quantobj, histogram, boxlist + i, i);
free (boxlist);
}
/*
* These routines are concerned with the time-critical task of mapping input
* colors to the nearest color in the selected colormap.
*
* We re-use the histogram space as an "inverse color map", essentially a
* cache for the results of nearest-color searches. All colors within a
* histogram cell will be mapped to the same colormap entry, namely the one
* closest to the cell's center. This may not be quite the closest entry to
* the actual input color, but it's almost as good. A zero in the cache
* indicates we haven't found the nearest color for that cell yet; the array
* is cleared to zeroes before starting the mapping pass. When we find the
* nearest color for a cell, its colormap index plus one is recorded in the
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
* when they need to use an unfilled entry in the cache.
*
* Our method of efficiently finding nearest colors is based on the "locally
* sorted search" idea described by Heckbert and on the incremental distance
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
* the distances from a given colormap entry to each cell of the histogram can
* be computed quickly using an incremental method: the differences between
* distances to adjacent cells themselves differ by a constant. This allows a
* fairly fast implementation of the "brute force" approach of computing the
* distance from every colormap entry to every histogram cell. Unfortunately,
* it needs a work array to hold the best-distance-so-far for each histogram
* cell (because the inner loop has to be over cells, not colormap entries).
* The work array elements have to be ints, so the work array would need
* 256Kb at our recommended precision. This is not feasible in DOS machines.
[ 256*1024/4 = 65,536 ]
* To get around these problems, we apply Thomas' method to compute the
* nearest colors for only the cells within a small subbox of the histogram.
* The work array need be only as big as the subbox, so the memory usage
* problem is solved. Furthermore, we need not fill subboxes that are never
* referenced in pass2; many images use only part of the color gamut, so a
* fair amount of work is saved. An additional advantage of this
* approach is that we can apply Heckbert's locality criterion to quickly
* eliminate colormap entries that are far away from the subbox; typically
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
* and we need not compute their distances to individual cells in the subbox.
* The speed of this approach is heavily influenced by the subbox size: too
* small means too much overhead, too big loses because Heckbert's criterion
* can't eliminate as many colormap entries. Empirically the best subbox
* size seems to be about 1/512th of the histogram (1/8th in each direction).
*
* Thomas' article also describes a refined method which is asymptotically
* faster than the brute-force method, but it is also far more complex and
* cannot efficiently be applied to small subboxes. It is therefore not
* useful for programs intended to be portable to DOS machines. On machines
* with plenty of memory, filling the whole histogram in one shot with Thomas'
* refined method might be faster than the present code --- but then again,
* it might not be any faster, and it's certainly more complicated.
*/
/* log2(histogram cells in update box) for each axis; this can be adjusted */
#define BOX_R_LOG (PRECISION_R-3)
#define BOX_G_LOG (PRECISION_G-3)
#define BOX_B_LOG (PRECISION_B-3)
#define BOX_R_ELEMS (1<<BOX_R_LOG) /* # of hist cells in update box */
#define BOX_G_ELEMS (1<<BOX_G_LOG)
#define BOX_B_ELEMS (1<<BOX_B_LOG)
#define BOX_R_SHIFT (R_SHIFT + BOX_R_LOG)
#define BOX_G_SHIFT (G_SHIFT + BOX_G_LOG)
#define BOX_B_SHIFT (B_SHIFT + BOX_B_LOG)
/*
* The next three routines implement inverse colormap filling. They could
* all be folded into one big routine, but splitting them up this way saves
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
* and may allow some compilers to produce better code by registerizing more
* inner-loop variables.
*/
static int find_nearby_colors(QuantizeObj *quantobj, int minR, int minG,
int minB, int *colorlist)
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
* candidate colormap entries is returned, and their colormap indexes are
* placed in colorlist[].
* This routine uses Heckbert's "locally sorted search" criterion to select
* the colors that need further consideration.
*/
{
int numcolors = quantobj->actual_number_of_colors;
int maxR, maxG, maxB;
int centerR, centerG, centerB;
int i, x, ncolors;
int minmaxdist, min_dist = 0, max_dist, tdist;
int mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
/* Compute true coordinates of update box's upper corner and center.
* Actually we compute the coordinates of the center of the upper-corner
* histogram cell, which are the upper bounds of the volume we care about.
* Note that since ">>" rounds down, the "center" values may be closer to
* min than to max; hence comparisons to them must be "<=", not "<".
*/
maxR = minR + ((1 << BOX_R_SHIFT) - (1 << R_SHIFT));
centerR = (minR + maxR) >> 1;
maxG = minG + ((1 << BOX_G_SHIFT) - (1 << G_SHIFT));
centerG = (minG + maxG) >> 1;
maxB = minB + ((1 << BOX_B_SHIFT) - (1 << B_SHIFT));
centerB = (minB + maxB) >> 1;
/* For each color in colormap, find:
* 1. its minimum squared-distance to any point in the update box
* (zero if color is within update box);
* 2. its maximum squared-distance to any point in the update box.
* Both of these can be found by considering only the corners of the box.
* We save the minimum distance for each color in mindist[];
* only the smallest maximum distance is of interest.
*/
minmaxdist = 0x7FFFFFFFL;
for (i = 0; i < numcolors; i++) {
/* We compute the squared-R-distance term, then add in the other two. */
x = quantobj->cmap[i].r;
if (x < minR) {
tdist = (x - minR) R_SCALE;
min_dist = tdist * tdist;
tdist = (x - maxR) R_SCALE;
max_dist = tdist * tdist;
} else if (x > maxR) {
tdist = (x - maxR) R_SCALE;
min_dist = tdist * tdist;
tdist = (x - minR) R_SCALE;
max_dist = tdist * tdist;
} else {
/* within cell range so no contribution to min_dist */
min_dist = 0;
if (x <= centerR) {
tdist = (x - maxR) R_SCALE;
max_dist = tdist * tdist;
} else {
tdist = (x - minR) R_SCALE;
max_dist = tdist * tdist;
}
}
x = quantobj->cmap[i].g;
if (x < minG) {
tdist = (x - minG) G_SCALE;
min_dist += tdist * tdist;
tdist = (x - maxG) G_SCALE;
max_dist += tdist * tdist;
} else if (x > maxG) {
tdist = (x - maxG) G_SCALE;
min_dist += tdist * tdist;
tdist = (x - minG) G_SCALE;
max_dist += tdist * tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerG) {
tdist = (x - maxG) G_SCALE;
max_dist += tdist * tdist;
} else {
tdist = (x - minG) G_SCALE;
max_dist += tdist * tdist;
}
}
x = quantobj->cmap[i].b;
if (x < minB) {
tdist = (x - minB) B_SCALE;
min_dist += tdist * tdist;
tdist = (x - maxB) B_SCALE;
max_dist += tdist * tdist;
} else if (x > maxB) {
tdist = (x - maxB) B_SCALE;
min_dist += tdist * tdist;
tdist = (x - minB) B_SCALE;
max_dist += tdist * tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerB) {
tdist = (x - maxB) B_SCALE;
max_dist += tdist * tdist;
} else {
tdist = (x - minB) B_SCALE;
max_dist += tdist * tdist;
}
}
mindist[i] = min_dist; /* save away the results */
if (max_dist < minmaxdist)
minmaxdist = max_dist;
}
/* Now we know that no cell in the update box is more than minmaxdist
* away from some colormap entry. Therefore, only colors that are
* within minmaxdist of some part of the box need be considered.
*/
ncolors = 0;
for (i = 0; i < numcolors; i++) {
if (mindist[i] <= minmaxdist)
colorlist[ncolors++] = i;
}
return ncolors;
}
static void find_best_colors(QuantizeObj *quantobj, int minR, int minG,
int minB, int numcolors, int *colorlist,int *bestcolor)
/* Find the closest colormap entry for each cell in the update box,
given the list of candidate colors prepared by find_nearby_colors.
Return the indexes of the closest entries in the bestcolor[] array.
This routine uses Thomas' incremental distance calculation method to
find the distance from a colormap entry to successive cells in the box.
*/
{
int iR, iG, iB;
int i, icolor;
int *bptr; /* pointer into bestdist[] array */
int *cptr; /* pointer into bestcolor[] array */
int dist0, dist1; /* initial distance values */
int dist2; /* current distance in inner loop */
int xx0, xx1; /* distance increments */
int xx2;
int inR, inG, inB; /* initial values for increments */
/* This array holds the distance to the nearest-so-far color for each cell */
int bestdist[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
/* Initialize best-distance for each cell of the update box */
bptr = bestdist;
for (i = BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS - 1; i >= 0; i--)
*bptr++ = 0x7FFFFFFFL;
/* For each color selected by find_nearby_colors,
* compute its distance to the center of each cell in the box.
* If that's less than best-so-far, update best distance and color number.
*/
/* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_R ((1 << R_SHIFT) R_SCALE)
#define STEP_G ((1 << G_SHIFT) G_SCALE)
#define STEP_B ((1 << B_SHIFT) B_SCALE)
for (i = 0; i < numcolors; i++) {
icolor = colorlist[i];
/* Compute (square of) distance from minR/G/B to this color */
inR = (minR - quantobj->cmap[icolor].r) R_SCALE;
dist0 = inR * inR;
inG = (minG - quantobj->cmap[icolor].g) G_SCALE;
dist0 += inG * inG;
inB = (minB - quantobj->cmap[icolor].b) B_SCALE;
dist0 += inB * inB;
/* Form the initial difference increments */
inR = inR * (2 * STEP_R) + STEP_R * STEP_R;
inG = inG * (2 * STEP_G) + STEP_G * STEP_G;
inB = inB * (2 * STEP_B) + STEP_B * STEP_B;
/* Now loop over all cells in box, updating distance per Thomas method */
bptr = bestdist;
cptr = bestcolor;
xx0 = inR;
for (iR = BOX_R_ELEMS - 1; iR >= 0; iR--) {
dist1 = dist0;
xx1 = inG;
for (iG = BOX_G_ELEMS - 1; iG >= 0; iG--) {
dist2 = dist1;
xx2 = inB;
for (iB = BOX_B_ELEMS - 1; iB >= 0; iB--) {
if (dist2 < *bptr) {
*bptr = dist2;
*cptr = icolor;
}
dist2 += xx2;
xx2 += 2 * STEP_B * STEP_B;
bptr++;
cptr++;
}
dist1 += xx1;
xx1 += 2 * STEP_G * STEP_G;
}
dist0 += xx0;
xx0 += 2 * STEP_R * STEP_R;
}
}
}
static void fill_inverse_cmap_rgb(QuantizeObj *quantobj, Histogram histogram,
int R, int G, int B)
/* Fill the inverse-colormap entries in the update box that contains
histogram cell R/G/B. (Only that one cell MUST be filled, but
we can fill as many others as we wish.) */
{
int minR, minG, minB; /* lower left corner of update box */
int iR, iG, iB;
int *cptr; /* pointer into bestcolor[] array */
ColorFreq *cachep; /* pointer into main cache array */
/* This array lists the candidate colormap indexes. */
int colorlist[MAXNUMCOLORS];
int numcolors; /* number of candidate colors */
/* This array holds the actually closest colormap index for each cell. */
int bestcolor[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
/* Convert cell coordinates to update box ID */
R >>= BOX_R_LOG;
G >>= BOX_G_LOG;
B >>= BOX_B_LOG;
/* Compute true coordinates of update box's origin corner.
* Actually we compute the coordinates of the center of the corner
* histogram cell, which are the lower bounds of the volume we care about.
*/
minR = (R << BOX_R_SHIFT) + ((1 << R_SHIFT) >> 1);
minG = (G << BOX_G_SHIFT) + ((1 << G_SHIFT) >> 1);
minB = (B << BOX_B_SHIFT) + ((1 << B_SHIFT) >> 1);
/* Determine which colormap entries are close enough to be candidates
* for the nearest entry to some cell in the update box.
*/
numcolors = find_nearby_colors(quantobj, minR, minG, minB, colorlist);
/* Determine the actually nearest colors. */
find_best_colors(quantobj, minR, minG, minB, numcolors, colorlist,
bestcolor);
/* Save the best color numbers (plus 1) in the main cache array */
R <<= BOX_R_LOG; /* convert ID back to base cell indexes */
G <<= BOX_G_LOG;
B <<= BOX_B_LOG;
cptr = bestcolor;
for (iR = 0; iR < BOX_R_ELEMS; iR++) {
for (iG = 0; iG < BOX_G_ELEMS; iG++) {
cachep = &histogram[(R + iR) * MR + (G + iG) * MG + B];
for (iB = 0; iB < BOX_B_ELEMS; iB++) {
*cachep++ = (*cptr++) + 1;
}
}
}
}
/* This is pass 1 */
static void median_cut_pass1_rgb(QuantizeObj *quantobj, bitmap_type *image,
const color_type *ignoreColor)
{
generate_histogram_rgb(quantobj->histogram, image, ignoreColor);
select_colors_rgb(quantobj, quantobj->histogram);
}
/* Map some rows of pixels to the output colormapped representation. */
static void median_cut_pass2_rgb(QuantizeObj *quantobj, bitmap_type *image,
const color_type *bgColor)
/* This version performs no dithering */
{
Histogram histogram = quantobj->histogram;
ColorFreq *cachep;
int R, G, B;
int origR, origG, origB;
int row, col;
int spp = BITMAP_PLANES(*image);
int width = BITMAP_WIDTH(*image);
int height = BITMAP_HEIGHT(*image);
unsigned char *src, *dest;
color_type bg_color = { 0xff, 0xff, 0xff };
zero_histogram_rgb(histogram);
if (bgColor)
{
/* Find the nearest colormap entry for the background color. */
R = bgColor->r >> R_SHIFT;
G = bgColor->g >> G_SHIFT;
B = bgColor->b >> B_SHIFT;
cachep = &histogram[R * MR + G * MG + B];
if (*cachep == 0)
fill_inverse_cmap_rgb(quantobj, histogram, R, G, B);
bg_color = quantobj->cmap[*cachep - 1];
}
src = dest = image->bitmap;
if (spp == 3)
{
for (row = 0; row < height; row++) {
for (col = 0; col < width; col++) {
/* get pixel value and index into the cache */
origR = (*src++); origG = (*src++); origB = (*src++);
/*
if (origR > 253 && origG > 253 && origB > 253)
{
(*dest++) = 255; (*dest++) = 255; (*dest++) = 255;
continue;
}
*/
/* get pixel value and index into the cache */
R = origR >> R_SHIFT;
G = origG >> G_SHIFT;
B = origB >> B_SHIFT;
cachep = &histogram[R * MR + G * MG + B];
/* If we have not seen this color before, find nearest
colormap entry and update the cache */
if (*cachep == 0) {
fill_inverse_cmap_rgb(quantobj, histogram, R, G, B);
}
/* Now emit the colormap index for this cell */
dest[0] = quantobj->cmap[*cachep - 1].r;
dest[1] = quantobj->cmap[*cachep - 1].g;
dest[2] = quantobj->cmap[*cachep - 1].b;
/* If the colormap entry for this pixel is the same as the
background's colormap entry, set the pixel to the
background color. */
if (bgColor && (dest[0] == bg_color.r
&& dest[1] == bg_color.g && dest[2] == bg_color.b))
{
dest[0] = bgColor->r;
dest[1] = bgColor->g;
dest[2] = bgColor->b;
}
dest += 3;
}
}
}
else if (spp == 1)
{
long idx = width * height;
while (--idx >= 0)
{
origR = src[idx];
R = origR >> R_SHIFT; G = origR >> G_SHIFT; B = origR >> B_SHIFT;
cachep = &histogram[R * MR + G * MG + B];
if (*cachep == 0)
fill_inverse_cmap_rgb(quantobj, histogram, R, G, B);
dest[idx] = quantobj->cmap[*cachep - 1].r;
/* If the colormap entry for this pixel is the same as the
background's colormap entry, set the pixel to the
background color. */
if (bgColor && dest[idx] == bg_color.r)
dest[idx] = bgColor->r;
}
}
}
static QuantizeObj *initialize_median_cut(int num_colors)
{
QuantizeObj *quantobj;
/* Initialize the data structures */
XMALLOC (quantobj, sizeof(QuantizeObj));
XMALLOC (quantobj->histogram, sizeof(ColorFreq) *
HIST_R_ELEMS *
HIST_G_ELEMS *
HIST_B_ELEMS);
quantobj->desired_number_of_colors = num_colors;
return quantobj;
}
void quantize(bitmap_type *image, long ncolors, const color_type *bgColor,
QuantizeObj **iQuant, at_exception_type * exp)
{
QuantizeObj *quantobj;
unsigned int spp = BITMAP_PLANES(*image);
if (spp != 3 && spp != 1)
{
LOG1 ("quantize: %u-plane images are not supported", spp);
at_exception_fatal(exp, "quantize: wrong plane images are passed");
return;
}
/* If a pointer was sent in, let's use it. */
if (iQuant)
{
if (*iQuant == NULL)
{
quantobj = initialize_median_cut(ncolors);
median_cut_pass1_rgb (quantobj, image, bgColor);
*iQuant = quantobj;
}
else
quantobj = *iQuant;
}
else
{
quantobj = initialize_median_cut(ncolors);
median_cut_pass1_rgb (quantobj, image, NULL);
}
median_cut_pass2_rgb (quantobj, image, bgColor);
if (iQuant == NULL)
quantize_object_free(quantobj);
}
void
quantize_object_free(QuantizeObj * quantobj)
{
free (quantobj->histogram);
free (quantobj);
}
|