1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
/* Copyright (c) 1999, 2000, 2001, 2002, Rich Neswold
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. */
/** \defgroup avr_interrupts Interrupts and Signals
\note This discussion of interrupts and signals was taken from Rich Neswold's
document. See \ref acks.
It's nearly impossible to find compilers that agree on how to handle interrupt
code. Since the C language tries to stay away from machine dependent details,
each compiler writer is forced to design their method of support.
In the AVR-GCC environment, the vector table is predefined to point to
interrupt routines with predetermined names. By using the appropriate name,
your routine will be called when the corresponding interrupt occurs. The
device library provides a set of default interrupt routines, which will get
used if you don't define your own.
Patching into the vector table is only one part of the problem. The compiler
uses, by convention, a set of registers when it's normally executing
compiler-generated code. It's important that these registers, as well as the
status register, get saved and restored. The extra code needed to do this is
enabled by tagging the interrupt function with
<tt>__attribute__((interrupt))</tt>.
These details seem to make interrupt routines a little messy, but all these
details are handled by the Interrupt API. An interrupt routine is defined with
one of two macros, INTERRUPT() and SIGNAL(). These macros register and mark
the routine as an interrupt handler for the specified peripheral. The
following is an example definition of a handler for the ADC interrupt.
\code
#include <avr/signal.h>
INTERRUPT(SIG_ADC)
{
// user code here
}
\endcode
Refer to the chapter explaining \ref ass_isr "assembler programming" for an
explanation about interrupt routines written solely in assembler language.
If an unexpected interrupt occurs (interrupt is enabled and no handler is
installed, which usually indicates a bug), then the default action is to reset
the device by jumping to the reset vector. You can override this by supplying
a function named \c __vector_default which should be defined with either
SIGNAL() or INTERRUPT() as such.
\code
#include <avr/signal.h>
SIGNAL(__vector_default)
{
// user code here
}
\endcode
The interrupt is chosen by supplying one of the symbols in following table.
Note that every AVR device has a different interrupt vector table so some
signals might not be available. Check the data sheet for the device you are
using.
<b>[FIXME: Fill in the blanks! Gotta read those durn data sheets ;-)]</b>
\note The SIGNAL() and INTERRUPT() macros currently cannot spell-check
the argument passed to them. Thus, by misspelling one of the names
below in a call to SIGNAL() or INTERRUPT(), a function will be created
that, while possibly being usable as an interrupt function, is not
actually wired into the interrupt vector table. No warning will be
given about this situation.
\anchor avr_signames
<small>
<table>
<tr>
<td><b>Signal Name</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td>SIG_2WIRE_SERIAL</td>
<td>2-wire serial interface (aka. IC [tm])</td>
</tr>
<tr>
<td>SIG_ADC</td>
<td>ADC Conversion complete</td>
</tr>
<tr>
<td>SIG_COMPARATOR</td>
<td>Analog Comparator Interrupt</td>
</tr>
<tr>
<td>SIG_EEPROM_READY</td>
<td>Eeprom ready</td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT0</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT1</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT2</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT3</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT4</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT5</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT6</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT7</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT8</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT9</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT10</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT11</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT12</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT13</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT14</td>
<td></td>
</tr>
<tr>
<td>SIG_FPGA_INTERRUPT15</td>
<td></td>
</tr>
<tr>
<td>SIG_INPUT_CAPTURE1</td>
<td>Input Capture1 Interrupt</td>
</tr>
<tr>
<td>SIG_INPUT_CAPTURE3</td>
<td>Input Capture3 Interrupt</td>
</tr>
<tr>
<td>SIG_INTERRUPT0</td>
<td>External Interrupt0</td>
</tr>
<tr>
<td>SIG_INTERRUPT1</td>
<td>External Interrupt1</td>
</tr>
<tr>
<td>SIG_INTERRUPT2</td>
<td>External Interrupt2</td>
</tr>
<tr>
<td>SIG_INTERRUPT3</td>
<td>External Interrupt3</td>
</tr>
<tr>
<td>SIG_INTERRUPT4</td>
<td>External Interrupt4</td>
</tr>
<tr>
<td>SIG_INTERRUPT5</td>
<td>External Interrupt5</td>
</tr>
<tr>
<td>SIG_INTERRUPT6</td>
<td>External Interrupt6</td>
</tr>
<tr>
<td>SIG_INTERRUPT7</td>
<td>External Interrupt7</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE0</td>
<td>Output Compare0 Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE1A</td>
<td>Output Compare1(A) Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE1B</td>
<td>Output Compare1(B) Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE1C</td>
<td>Output Compare1(C) Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE2</td>
<td>Output Compare2 Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE3A</td>
<td>Output Compare3(A) Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE3B</td>
<td>Output Compare3(B) Interrupt</td>
</tr>
<tr>
<td>SIG_OUTPUT_COMPARE3C</td>
<td>Output Compare3(C) Interrupt</td>
</tr>
<tr>
<td>SIG_OVERFLOW0</td>
<td>Overflow0 Interrupt</td>
</tr>
<tr>
<td>SIG_OVERFLOW1</td>
<td>Overflow1 Interrupt</td>
</tr>
<tr>
<td>SIG_OVERFLOW2</td>
<td>Overflow2 Interrupt</td>
</tr>
<tr>
<td>SIG_OVERFLOW3</td>
<td>Overflow3 Interrupt</td>
</tr>
<tr>
<td>SIG_PIN</td>
<td></td>
</tr>
<tr>
<td>SIG_PIN_CHANGE0</td>
<td></td>
</tr>
<tr>
<td>SIG_PIN_CHANGE1</td>
<td></td>
</tr>
<tr>
<td>SIG_RDMAC</td>
<td></td>
</tr>
<tr>
<td>SIG_SPI</td>
<td>SPI Interrupt</td>
</tr>
<tr>
<td>SIG_SPM_READY</td>
<td>Store program memory ready</td>
</tr>
<tr>
<td>SIG_SUSPEND_RESUME</td>
<td></td>
</tr>
<tr>
<td>SIG_TDMAC</td>
<td></td>
</tr>
<tr>
<td>SIG_UART0</td>
<td></td>
</tr>
<tr>
<td>SIG_UART0_DATA</td>
<td>UART(0) Data Register Empty Interrupt</td>
</tr>
<tr>
<td>SIG_UART0_RECV</td>
<td>UART(0) Receive Complete Interrupt</td>
</tr>
<tr>
<td>SIG_UART0_TRANS</td>
<td>UART(0) Transmit Complete Interrupt</td>
</tr>
<tr>
<td>SIG_UART1</td>
<td></td>
</tr>
<tr>
<td>SIG_UART1_DATA</td>
<td>UART(1) Data Register Empty Interrupt</td>
</tr>
<tr>
<td>SIG_UART1_RECV</td>
<td>UART(1) Receive Complete Interrupt</td>
</tr>
<tr>
<td>SIG_UART1_TRANS</td>
<td>UART(1) Transmit Complete Interrupt</td>
</tr>
<tr>
<td>SIG_UART_DATA</td>
<td>UART Data Register Empty Interrupt</td>
</tr>
<tr>
<td>SIG_UART_RECV</td>
<td>UART Receive Complete Interrupt</td>
</tr>
<tr>
<td>SIG_UART_TRANS</td>
<td>UART Transmit Complete Interrupt</td>
</tr>
<tr>
<td>SIG_USART0_DATA</td>
<td>USART(0) Data Register Empty Interrupt</td>
</tr>
<tr>
<td>SIG_USART0_RECV</td>
<td>USART(0) Receive Complete Interrupt</td>
</tr>
<tr>
<td>SIG_USART0_TRANS</td>
<td>USART(0) Transmit Complete Interrupt</td>
</tr>
<tr>
<td>SIG_USART1_DATA</td>
<td>USART(1) Data Register Empty Interrupt</td>
</tr>
<tr>
<td>SIG_USART1_RECV</td>
<td>USART(1) Receive Complete Interrupt</td>
</tr>
<tr>
<td>SIG_USART1_TRANS</td>
<td>USART(1) Transmit Complete Interrupt</td>
</tr>
<tr>
<td>SIG_USB_HW</td>
<td></td>
</tr>
</table>
</small>
*/
|