1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/* Copyright (c) 2002,2007 Michael Stumpf
Portions of documentation Copyright (c) 1990 - 1994
The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. */
/* $Id: math.h,v 1.21.2.2 2008/04/10 13:39:16 arcanum Exp $ */
/*
math.h - mathematical functions
Author : Michael Stumpf
Michael.Stumpf@t-online.de
__ATTR_CONST__ added by marekm@linux.org.pl for functions
that "do not examine any values except their arguments, and have
no effects except the return value", for better optimization by gcc.
*/
#ifndef __MATH_H
#define __MATH_H
/** \file */
/** \defgroup avr_math <math.h>: Mathematics
\code #include <math.h> \endcode
This header file declares basic mathematics constants and
functions.
\par Notes:
- In order to access the functions delcared herein, it is usually
also required to additionally link against the library \c libm.a.
See also the related \ref faq_libm "FAQ entry".
- Math functions do not raise exceptions and do not change the
\c errno variable. Therefore the majority of them are declared
with const attribute, for better optimization by GCC. */
/**
\ingroup avr_math
The constant \c pi. */
#define M_PI 3.141592653589793238462643
/**
\ingroup avr_math
The square root of 2. */
#define M_SQRT2 1.4142135623730950488016887
/**
\ingroup avr_math
NAN constant. */
#define NAN __builtin_nan("")
/**
\ingroup avr_math
INFINITY constant. */
#define INFINITY __builtin_inf()
#ifndef __ATTR_CONST__
# define __ATTR_CONST__ __attribute__((__const__))
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
\ingroup avr_math
The cos() function returns the cosine of \a __x, measured in radians.
*/
extern double cos(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The fabs() function computes the absolute value of a floating-point
number \a __x.
*/
extern double fabs(double __x) __ATTR_CONST__;
#if 0
/* fabs seems to be built in already */
static inline double fabs( double __x )
{ double __res;
__asm__ __volatile__ ("andi %D0,0x7F \n\t"
: "=d" (__res) : "0" (__x) );
return __res;
}
#endif
/**
\ingroup avr_math
The function fmod() returns the floating-point remainder of <em>__x /
__y</em>.
*/
extern double fmod(double __x, double __y) __ATTR_CONST__;
/**
\ingroup avr_math
The modf() function breaks the argument \a __x into integral and
fractional parts, each of which has the same sign as the argument.
It stores the integral part as a double in the object pointed to by
\a __iptr.
The modf() function returns the signed fractional part of \a __x.
\note
This implementation skips writing by zero pointer.
*/
extern double modf(double __x, double *__iptr);
/**
\ingroup avr_math
The sin() function returns the sine of \a __x, measured in radians.
*/
extern double sin(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The sqrt() function returns the non-negative square root of \a __x.
*/
extern double sqrt(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The tan() function returns the tangent of \a __x, measured in
radians.
*/
extern double tan(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The floor() function returns the largest integral value less than or
equal to \a __x, expressed as a floating-point number.
*/
extern double floor(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The ceil() function returns the smallest integral value greater than
or equal to \a __x, expressed as a floating-point number.
*/
extern double ceil(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The frexp() function breaks a floating-point number into a normalized
fraction and an integral power of 2. It stores the integer in the \c
int object pointed to by \a __pexp.
If \a __x is a normal float point number, the frexp() function
returns the value \c v, such that \c v has a magnitude in the
interval [1/2, 1) or zero, and \a __x equals \c v times 2 raised to
the power \a __pexp. If \a __x is zero, both parts of the result are
zero. If \a __x is not a finite number, the frexp() returns \a __x as
is and stores 0 by \a __pexp.
\note This implementation permits a zero pointer as a directive to
skip a storing the exponent.
*/
extern double frexp(double __x, int *__pexp);
/**
\ingroup avr_math
The ldexp() function multiplies a floating-point number by an integral
power of 2.
The ldexp() function returns the value of \a __x times 2 raised to
the power \a __exp.
*/
extern double ldexp(double __x, int __exp) __ATTR_CONST__;
/**
\ingroup avr_math
The exp() function returns the exponential value of \a __x.
*/
extern double exp(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The cosh() function returns the hyperbolic cosine of \a __x.
*/
extern double cosh(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The sinh() function returns the hyperbolic sine of \a __x.
*/
extern double sinh(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The tanh() function returns the hyperbolic tangent of \a __x.
*/
extern double tanh(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The acos() function computes the principal value of the arc cosine of
\a __x. The returned value is in the range [0, pi] radians. A domain
error occurs for arguments not in the range [-1, +1].
*/
extern double acos(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The asin() function computes the principal value of the arc sine of
\a __x. The returned value is in the range [-pi/2, pi/2] radians. A
domain error occurs for arguments not in the range [-1, +1].
*/
extern double asin(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The atan() function computes the principal value of the arc tangent
of \a __x. The returned value is in the range [-pi/2, pi/2] radians.
*/
extern double atan(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The atan2() function computes the principal value of the arc tangent
of <em>__y / __x</em>, using the signs of both arguments to determine
the quadrant of the return value. The returned value is in the range
[-pi, +pi] radians.
*/
extern double atan2(double __y, double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The log() function returns the natural logarithm of argument \a __x.
*/
extern double log(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The log10() function returns the logarithm of argument \a __x to base
10.
*/
extern double log10(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The function pow() returns the value of \a __x to the exponent \a __y.
*/
extern double pow(double __x, double __y) __ATTR_CONST__;
/**
\ingroup avr_math
The function isnan() returns 1 if the argument \a __x represents a
"not-a-number" (NaN) object, otherwise 0.
*/
extern int isnan(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The function isinf() returns 1 if the argument \a __x is positive
infinity, -1 if \a __x is negative infinity, and 0 otherwise.
*/
extern int isinf(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The function square() returns <em>__x * __x</em>.
\note
This function does not belong to the C standard definition.
*/
extern double square(double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The copysign() function returns \a __x but with the sign of \a __y.
They work even if \a __x or \a __y are NaN or zero.
*/
__ATTR_CONST__ static inline double copysign (double __x, double __y)
{
__asm__ (
"bst %D2, 7 \n\t"
"bld %D0, 7 "
: "=r" (__x)
: "0" (__x), "r" (__y) );
return __x;
}
/**
\ingroup avr_math
The fdim() function returns <em>max(__x - __y, 0)</em>. If \a __x or
\a __y or both are NaN, NaN is returned.
*/
extern double fdim (double __x, double __y) __ATTR_CONST__;
/**
\ingroup avr_math
The fma() function performs floating-point multiply-add. This is the
operation <em>(__x * __y) + __z</em>, but the intermediate result is
not rounded to the destination type. This can sometimes improve the
precision of a calculation.
*/
extern double fma (double __x, double __y, double __z) __ATTR_CONST__;
/**
\ingroup avr_math
The fmax() function returns the greater of the two values \a __x and
\a __y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned.
*/
extern double fmax (double __x, double __y) __ATTR_CONST__;
/**
\ingroup avr_math
The fmin() function returns the lesser of the two values \a __x and
\a __y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned.
*/
extern double fmin (double __x, double __y) __ATTR_CONST__;
/**
\ingroup avr_math
The signbit() function returns a nonzero value if the value of \a __x
has its sign bit set. This is not the same as `\a __x < 0.0',
because IEEE 754 floating point allows zero to be signed. The
comparison `-0.0 < 0.0' is false, but `signbit (-0.0)' will return a
nonzero value.
\note
This implementation returns 1 if sign bit is set.
*/
extern int signbit (double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The trunc() function rounds \a __x to the nearest integer not larger
in absolute value.
*/
extern double trunc (double __x) __ATTR_CONST__;
/**
\ingroup avr_math
The isfinite() function returns a nonzero value if \a __x is finite:
not plus or minus infinity, and not NaN.
*/
__ATTR_CONST__ static inline int isfinite (double __x)
{
unsigned char __exp;
__asm__ (
"mov %0, %C1 \n\t"
"lsl %0 \n\t"
"mov %0, %D1 \n\t"
"rol %0 "
: "=r" (__exp)
: "r" (__x) );
return __exp != 0xff;
}
/**
\ingroup avr_math
The hypot() function returns <em>sqrt(__x*__x + __y*__y)</em>. This
is the length of the hypotenuse of a right triangle with sides of
length \a __x and \a __y, or the distance of the point (\a __x, \a
__y) from the origin. Using this function instead of the direct
formula is wise, since the error is much smaller. No underflow with
small \a __x and \a __y. No overflow if result is in range.
*/
double hypot (double __x, double __y) __ATTR_CONST__;
/** \ingroup avr_math
The round() function rounds \a __x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
Overflow is impossible.
\return The rounded value. If \a __x is an integral or infinite, \a
__x itself is returned. If \a __x is \c NaN, then \c NaN is returned.
*/
double round (double __x) __ATTR_CONST__;
/** \ingroup avr_math
The lround() function rounds \a __x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
This function is similar to round() function, but it differs in type of
return value and in that an overflow is possible.
\return The rounded long integer value. If \a __x is not a finite number
or an overflow was, this realization returns the \c LONG_MIN value
(0x80000000).
*/
long lround (double __x) __ATTR_CONST__;
/** \ingroup avr_math
The lrint() function rounds \a __x to the nearest integer, rounding the
halfway cases to the even integer direction. (That is both 1.5 and 2.5
values are rounded to 2). This function is similar to rint() function,
but it differs in type of return value and in that an overflow is
possible.
\return The rounded long integer value. If \a __x is not a finite
number or an overflow was, this realization returns the \c LONG_MIN
value (0x80000000).
*/
long lrint (double __x) __ATTR_CONST__;
#ifdef __cplusplus
}
#endif
#endif /* _MATH_H */
|