File: delay.h

package info (click to toggle)
avr-libc 1%3A1.6.2.cvs20080610-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 14,848 kB
  • ctags: 55,619
  • sloc: ansic: 92,267; asm: 6,692; sh: 4,131; makefile: 2,481; python: 976; pascal: 426; perl: 116
file content (165 lines) | stat: -rw-r--r-- 5,648 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/* Copyright (c) 2002, Marek Michalkiewicz
   Copyright (c) 2004,2005,2007 Joerg Wunsch
   Copyright (c) 2007  Florin-Viorel Petrov
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are met:

   * Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

   * Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.

   * Neither the name of the copyright holders nor the names of
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE. */

/* $Id: delay.h,v 1.5 2007/10/28 23:25:56 joerg_wunsch Exp $ */

#ifndef _UTIL_DELAY_H_
#define _UTIL_DELAY_H_ 1

#include <inttypes.h>
#include <util/delay_basic.h>

/** \file */
/** \defgroup util_delay <util/delay.h>: Convenience functions for busy-wait delay loops
    \code
    #define F_CPU 1000000UL  // 1 MHz
    //#define F_CPU 14.7456E6
    #include <util/delay.h>
    \endcode

    \note As an alternative method, it is possible to pass the
    F_CPU macro down to the compiler from the Makefile.
    Obviously, in that case, no \c \#define statement should be
    used.

    The functions in this header file are wrappers around the basic
    busy-wait functions from <util/delay_basic.h>.  They are meant as
    convenience functions where actual time values can be specified
    rather than a number of cycles to wait for.  The idea behind is
    that compile-time constant expressions will be eliminated by
    compiler optimization so floating-point expressions can be used
    to calculate the number of delay cycles needed based on the CPU
    frequency passed by the macro F_CPU.

    \note In order for these functions to work as intended, compiler
    optimizations <em>must</em> be enabled, and the delay time
    <em>must</em> be an expression that is a known constant at
    compile-time.  If these requirements are not met, the resulting
    delay will be much longer (and basically unpredictable), and
    applications that otherwise do not use floating-point calculations
    will experience severe code bloat by the floating-point library
    routines linked into the application.

    The functions available allow the specification of microsecond, and
    millisecond delays directly, using the application-supplied macro
    F_CPU as the CPU clock frequency (in Hertz).

*/

#if !defined(__DOXYGEN__)
static inline void _delay_us(double __us) __attribute__((always_inline));
static inline void _delay_ms(double __ms) __attribute__((always_inline));
#endif

#ifndef F_CPU
/* prevent compiler error by supplying a default */
# warning "F_CPU not defined for <util/delay.h>"
# define F_CPU 1000000UL
#endif

#ifndef __OPTIMIZE__
# warning "Compiler optimizations disabled; functions from <util/delay.h> won't work as designed"
#endif

/**
   \ingroup util_delay

   Perform a delay of \c __us microseconds, using _delay_loop_1().

   The macro F_CPU is supposed to be defined to a
   constant defining the CPU clock frequency (in Hertz).

   The maximal possible delay is 768 us / F_CPU in MHz.

   If the user requests a delay greater than the maximal possible one,
   _delay_us() will automatically call _delay_ms() instead.  The user
   will not be informed about this case.
 */
void
_delay_us(double __us)
{
	uint8_t __ticks;
	double __tmp = ((F_CPU) / 3e6) * __us;
	if (__tmp < 1.0)
		__ticks = 1;
	else if (__tmp > 255)
	{
		_delay_ms(__us / 1000.0);
		return;
	}
	else
		__ticks = (uint8_t)__tmp;
	_delay_loop_1(__ticks);
}


/**
   \ingroup util_delay

   Perform a delay of \c __ms milliseconds, using _delay_loop_2().

   The macro F_CPU is supposed to be defined to a
   constant defining the CPU clock frequency (in Hertz).

   The maximal possible delay is 262.14 ms / F_CPU in MHz.

   When the user request delay which exceed the maximum possible one,
   _delay_ms() provides a decreased resolution functionality. In this
   mode _delay_ms() will work with a resolution of 1/10 ms, providing
   delays up to 6.5535 seconds (independent from CPU frequency).  The
   user will not be informed about decreased resolution.
 */
void
_delay_ms(double __ms)
{
	uint16_t __ticks;
	double __tmp = ((F_CPU) / 4e3) * __ms;
	if (__tmp < 1.0)
		__ticks = 1;
	else if (__tmp > 65535)
	{
		//	__ticks = requested delay in 1/10 ms
		__ticks = (uint16_t) (__ms * 10.0);
		while(__ticks)
		{
			// wait 1/10 ms
			_delay_loop_2(((F_CPU) / 4e3) / 10);
			__ticks --;
		}
		return;
	}
	else
		__ticks = (uint16_t)__tmp;
	_delay_loop_2(__ticks);
}

#endif /* _UTIL_DELAY_H_ */