1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
* ----------------------------------------------------------------------------
*
* More advanced AVR demonstration. Controls a LED attached to OCR1A.
* The brightness of the LED is controlled with the PWM. A number of
* methods are implemented to control that PWM.
*
* $Id: largedemo.c 1190 2007-01-19 22:17:10Z joerg_wunsch $
*/
#include <stdint.h>
#include <stdlib.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/sleep.h>
#include <avr/wdt.h>
/* Part 1: Macro definitions */
#define CONTROL_PORT PORTD
#define CONTROL_DDR DDRD
#if defined(__AVR_ATtiny2313__)
/* no PD7 and no ADC available on ATtiny2313 */
# define TRIGGER_DOWN PD2
# define TRIGGER_UP PD3
# define FLASH PD4
# define CLOCKOUT PD6
#else
# define TRIGGER_DOWN PD2
# define TRIGGER_UP PD3
# define TRIGGER_ADC PD4
# define CLOCKOUT PD6
# define FLASH PD7
#endif
#if defined(__AVR_ATmega16__)
# define PWMDDR DDRD
# define PWMOUT PD5
#elif defined(__AVR_ATmega8__) || defined(__AVR_ATmega48__) ||\
defined(__AVR_ATmega88__) || defined(__AVR_ATmega168__)
# define PWMDDR DDRB
# define PWMOUT PB1
#elif defined(__AVR_ATtiny2313__)
# define PWMDDR DDRB
# define PWMOUT PB3
# define HAVE_ADC 0
# define USART_RXC_vect USART_RX_vect
# define MCUCSR MCUSR
#else
# error "Unsupported MCU type"
#endif
#if defined(__AVR_ATmega48__) || defined(__AVR_ATmega88__) ||\
defined(__AVR_ATmega168__)
/* map ATmega8/16 names to ATmegaX8 names */
# define USART_RXC_vect USART_RX_vect
# define UDR UDR0
# define UCSRA UCSR0A
# define UCSRB UCSR0B
# define FE FE0
# define TXEN TXEN0
# define RXEN RXEN0
# define RXCIE RXCIE0
# define UDRE UDRE0
# define U2X U2X0
# define UBRRL UBRR0L
# define TIMSK TIMSK1
# define MCUCSR MCUSR
#endif
#if !defined(HAVE_ADC)
# define HAVE_ADC 1
#endif
#define F_CPU 1000000UL /* CPU clock in Hertz */
#define SOFTCLOCK_FREQ 100 /* internal software clock */
/*
* Timeout to wait after last PWM change till updating the EEPROM.
* Measured in internal clock ticks (approx. 100 Hz).
*/
#define EE_UPDATE_TIME (3 * SOFTCLOCK_FREQ) /* ca. 3 seconds */
/*
* Timer1 overflow interrupt will be called with F_CPU / 2048
* frequency. This interrupt routine further divides that value,
* resulting in an internal update interval of approx. 10 ms.
* (The complicated looking scaling by 10 / addition of 9 is
* poor man's fixed-point rounding algorithm...)
*/
#define TMR1_SCALE ((F_CPU * 10) / (2048UL * SOFTCLOCK_FREQ) + 9) / 10
/* Part 2: Variable definitions */
/*
* Bits that are set inside interrupt routines, and watched outside in
* the program's main loop.
*/
volatile struct
{
uint8_t tmr_int: 1;
uint8_t adc_int: 1;
uint8_t rx_int: 1;
}
intflags;
/*
* Last character read from the UART.
*/
volatile char rxbuff;
/*
* Last value read from ADC.
*/
volatile uint16_t adcval;
/*
* Where to store the PWM value in EEPROM. This is used in order
* to remember the value across a RESET or power cycle.
*/
uint16_t ee_pwm __attribute__((section(".eeprom"))) = 42;
/*
* Current value of the PWM.
*/
int16_t pwm;
/*
* EEPROM backup timer. Bumped by the PWM update routine. If it
* expires, the current PWM value will be written to EEPROM.
*/
int16_t pwm_backup_tmr;
/*
* Mirror of the MCUCSR register, taken early during startup.
*/
uint8_t mcucsr __attribute__((section(".noinit")));
/* Part 3: Interrupt service routines */
ISR(TIMER1_OVF_vect)
{
static uint8_t scaler = TMR1_SCALE;
if (--scaler == 0)
{
scaler = TMR1_SCALE;
intflags.tmr_int = 1;
}
}
#if HAVE_ADC
/*
* ADC conversion complete. Fetch the 10-bit value, and feed the
* PWM with it.
*/
ISR(ADC_vect)
{
adcval = ADCW;
ADCSRA &= ~_BV(ADIE); /* disable ADC interrupt */
intflags.adc_int = 1;
}
#endif /* HAVE_ADC */
/*
* UART receive interrupt. Fetch the character received and buffer
* it, unless there was a framing error. Note that the main loop
* checks the received character only once per 10 ms.
*/
ISR(USART_RXC_vect)
{
uint8_t c;
c = UDR;
if (bit_is_clear(UCSRA, FE))
{
rxbuff = c;
intflags.rx_int = 1;
}
}
/* Part 4: Auxiliary functions */
/*
* Read out and reset MCUCSR early during startup.
*/
void handle_mcucsr(void)
__attribute__((section(".init3")))
__attribute__((naked));
void handle_mcucsr(void)
{
mcucsr = MCUCSR;
MCUCSR = 0;
}
/*
* Do all the startup-time peripheral initializations.
*/
static void
ioinit(void)
{
uint16_t pwm_from_eeprom;
/*
* Set up the 16-bit timer 1.
*
* Timer 1 will be set up as a 10-bit phase-correct PWM (WGM10 and
* WGM11 bits), with OC1A used as PWM output. OC1A will be set when
* up-counting, and cleared when down-counting (COM1A1|COM1A0), this
* matches the behaviour needed by the STK500's low-active LEDs.
* The timer will runn on full MCU clock (1 MHz, CS10 in TCCR1B).
*/
TCCR1A = _BV(WGM10) | _BV(WGM11) | _BV(COM1A1) | _BV(COM1A0);
TCCR1B = _BV(CS10);
OCR1A = 0; /* set PWM value to 0 */
/* enable pull-ups for pushbuttons */
#if HAVE_ADC
CONTROL_PORT = _BV(TRIGGER_DOWN) | _BV(TRIGGER_UP) | _BV(TRIGGER_ADC);
#else
CONTROL_PORT = _BV(TRIGGER_DOWN) | _BV(TRIGGER_UP);
#endif
/*
* Enable Port D outputs: PD6 for the clock output, PD7 for the LED
* flasher. PD1 is UART TxD but not DDRD setting is provided for
* that, as enabling the UART transmitter will automatically turn
* this pin into an output.
*/
CONTROL_DDR = _BV(CLOCKOUT) | _BV(FLASH);
/*
* As the location of OC1A differs between supported MCU types, we
* enable that output separately here. Note that the DDRx register
* *might* be the same as CONTROL_DDR above, so make sure to not
* clobber it.
*/
PWMDDR |= _BV(PWMOUT);
UCSRA = _BV(U2X); /* improves baud rate error @ F_CPU = 1 MHz */
UCSRB = _BV(TXEN)|_BV(RXEN)|_BV(RXCIE); /* tx/rx enable, rx complete intr */
UBRRL = (F_CPU / (8 * 9600UL)) - 1; /* 9600 Bd */
#if HAVE_ADC
/*
* enable ADC, select ADC clock = F_CPU / 8 (i.e. 125 kHz)
*/
ADCSRA = _BV(ADEN) | _BV(ADPS1) | _BV(ADPS0);
#endif
TIMSK = _BV(TOIE1);
sei(); /* enable interrupts */
/*
* Enable the watchdog with the largest prescaler. Will cause a
* watchdog reset after approximately 2 s @ Vcc = 5 V
*/
wdt_enable(WDTO_2S);
/*
* Read the value from EEPROM. If it is not 0xffff (erased cells),
* use it as the starting value for the PWM.
*/
if ((pwm_from_eeprom = eeprom_read_word(&ee_pwm)) != 0xffff)
OCR1A = (pwm = pwm_from_eeprom);
}
/*
* Some simple UART IO functions.
*/
/*
* Send character c down the UART Tx, wait until tx holding register
* is empty.
*/
static void
putchr(char c)
{
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
}
/*
* Send a C (NUL-terminated) string down the UART Tx.
*/
static void
printstr(const char *s)
{
while (*s)
{
if (*s == '\n')
putchr('\r');
putchr(*s++);
}
}
/*
* Same as above, but the string is located in program memory,
* so "lpm" instructions are needed to fetch it.
*/
static void
printstr_p(const char *s)
{
char c;
for (c = pgm_read_byte(s); c; ++s, c = pgm_read_byte(s))
{
if (c == '\n')
putchr('\r');
putchr(c);
}
}
/*
* Update the PWM value. If it has changed, send the new value down
* the serial line.
*/
static void
set_pwm(int16_t new)
{
char s[8];
if (new < 0)
new = 0;
else if (new > 1000)
new = 1000;
if (new != pwm)
{
OCR1A = (pwm = new);
/*
* Calculate a "percentage". We just divide by 10, as we
* limited the max value of the PWM to 1000 above.
*/
new /= 10;
itoa(new, s, 10);
printstr(s);
putchr(' ');
pwm_backup_tmr = EE_UPDATE_TIME;
}
}
/* Part 5: main() */
int
main(void)
{
/*
* Our modus of operation. MODE_UPDOWN means we watch out for
* either PD2 or PD3 being low, and increase or decrease the
* PWM value accordingly. This is the default.
* MODE_ADC means the PWM value follows the value of ADC0 (PA0).
* This is enabled by applying low level to PC1.
* MODE_SERIAL means we get commands via the UART. This is
* enabled by sending a valid V.24 character at 9600 Bd to the
* UART.
*/
enum
{
MODE_UPDOWN,
MODE_ADC,
MODE_SERIAL
} __attribute__((packed)) mode = MODE_UPDOWN;
uint8_t flash = 0;
ioinit();
if ((mcucsr & _BV(WDRF)) == _BV(WDRF))
printstr_p(PSTR("\nOoops, the watchdog bit me!"));
printstr_p(PSTR("\nHello, this is the avr-gcc/libc "
"demo running on an "
#if defined(__AVR_ATmega16__)
"ATmega16"
#elif defined(__AVR_ATmega8__)
"ATmega8"
#elif defined(__AVR_ATmega48__)
"ATmega48"
#elif defined(__AVR_ATmega88__)
"ATmega88"
#elif defined(__AVR_ATmega168__)
"ATmega168"
#elif defined(__AVR_ATtiny2313__)
"ATtiny2313"
#else
"unknown AVR"
#endif
"\n"));
for (;;)
{
wdt_reset();
if (intflags.tmr_int)
{
/*
* Our periodic 10 ms interrupt happened. See what we can
* do about it.
*/
intflags.tmr_int = 0;
/*
* toggle PD6, just to show the internal clock; should
* yield ~ 48 Hz on PD6
*/
CONTROL_PORT ^= _BV(CLOCKOUT);
/*
* flash LED on PD7, approximately once per second
*/
flash++;
if (flash == 5)
CONTROL_PORT |= _BV(FLASH);
else if (flash == 100)
{
flash = 0;
CONTROL_PORT &= ~_BV(FLASH);
}
switch (mode)
{
case MODE_SERIAL:
/*
* In serial mode, there's nothing to do anymore here.
*/
break;
case MODE_UPDOWN:
/*
* Query the pushbuttons.
*
* NB: watch out to use PINx for reading, as opposed
* to using PORTx which would be the mirror of the
* _output_ latch register (resp. pullup configuration
* bit for input pins)!
*/
if (bit_is_clear(PIND, TRIGGER_DOWN))
set_pwm(pwm - 10);
else if (bit_is_clear(PIND, TRIGGER_UP))
set_pwm(pwm + 10);
#if HAVE_ADC
else if (bit_is_clear(PIND, TRIGGER_ADC))
mode = MODE_ADC;
#endif
break;
case MODE_ADC:
#if HAVE_ADC
if (bit_is_set(PIND, TRIGGER_ADC))
mode = MODE_UPDOWN;
else
{
/*
* Start one conversion.
*/
ADCSRA |= _BV(ADIE);
ADCSRA |= _BV(ADSC);
}
#endif /* HAVE_ADC */
break;
}
if (pwm_backup_tmr && --pwm_backup_tmr == 0)
{
/*
* The EEPROM backup timer expired. Save the current
* PWM value in EEPROM. Note that this function might
* block for a few milliseconds (after writing the
* first byte).
*/
eeprom_write_word(&ee_pwm, pwm);
printstr_p(PSTR("[EEPROM updated] "));
}
}
#if HAVE_ADC
if (intflags.adc_int)
{
intflags.adc_int = 0;
set_pwm(adcval);
}
#endif /* HAVE_ADC */
if (intflags.rx_int)
{
intflags.rx_int = 0;
if (rxbuff == 'q')
{
printstr_p(PSTR("\nThank you for using serial mode."
" Good-bye!\n"));
mode = MODE_UPDOWN;
}
else
{
if (mode != MODE_SERIAL)
{
printstr_p(PSTR("\nWelcome at serial control, "
"type +/- to adjust, or 0/1 to turn on/off\n"
"the LED, q to quit serial mode, "
"r to demonstrate a watchdog reset\n"));
mode = MODE_SERIAL;
}
switch (rxbuff)
{
case '+':
set_pwm(pwm + 10);
break;
case '-':
set_pwm(pwm - 10);
break;
case '0':
set_pwm(0);
break;
case '1':
set_pwm(1000);
break;
case 'r':
printstr_p(PSTR("\nzzzz... zzz..."));
for (;;)
;
}
}
}
sleep_mode();
}
}
|