1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
|
/* Copyright (c) 2002,2007-2009 Michael Stumpf
Portions of documentation Copyright (c) 1990 - 1994
The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. */
/* $Id$ */
/*
math.h - mathematical functions
Author : Michael Stumpf
Michael.Stumpf@t-online.de
__ATTR_CONST__ added by marekm@linux.org.pl for functions
that "do not examine any values except their arguments, and have
no effects except the return value", for better optimization by gcc.
*/
#ifndef __MATH_H
#define __MATH_H
#ifdef __cplusplus
extern "C" {
#endif
/** \file */
/** \defgroup avr_math <math.h>: Mathematics
\code #include <math.h> \endcode
This header file declares basic mathematics constants and
functions.
\par Notes:
- Math functions do not raise exceptions and do not change the
\c errno variable. Therefore the majority of them are declared
with \c const attribute, for better optimization by GCC.
- 64-bit floating-point arithmetic is only available in
<a href="https://gcc.gnu.org/gcc-10/changes.html#avr">avr-gcc v10</a>
and up.
The size of the \c double and \c long \c double type can be selected
at compile-time with options like <tt>-mdouble=64</tt> and
<tt>-mlong-double=32</tt>. Whether such options are available,
and their default values,
depend on how the compiler has been configured.
- The implementation of 64-bit floating-point arithmetic has some
shortcomings and limitations, see the
<a href="https://gcc.gnu.org/wiki/avr-gcc#Libf7">avr-gcc Wiki</a>
for details.
- In order to access the <tt>float</tt> functions,
in avr-gcc v4.6 and older it is usually
also required to link with \c -lm. In avr-gcc v4.7 and up, \c -lm
is added automatically to all linker invocations.
*/
/** \ingroup avr_math */
/**@{*/
/** The constant Euler's number \a e. */
#define M_E 2.7182818284590452354
/** The constant logarithm of Euler's number \a e to base 2. */
#define M_LOG2E 1.4426950408889634074
/** The constant logarithm of Euler's number \a e to base 10. */
#define M_LOG10E 0.43429448190325182765
/** The constant natural logarithm of 2. */
#define M_LN2 0.69314718055994530942
/** The constant natural logarithm of 10. */
#define M_LN10 2.30258509299404568402
/** The constant \a pi. */
#define M_PI 3.14159265358979323846
/** The constant \a pi/2. */
#define M_PI_2 1.57079632679489661923
/** The constant \a pi/4. */
#define M_PI_4 0.78539816339744830962
/** The constant \a 1/pi. */
#define M_1_PI 0.31830988618379067154
/** The constant \a 2/pi. */
#define M_2_PI 0.63661977236758134308
/** The constant \a 2/sqrt(pi). */
#define M_2_SQRTPI 1.12837916709551257390
/** The square root of 2. */
#define M_SQRT2 1.41421356237309504880
/** The constant \a 1/sqrt(2). */
#define M_SQRT1_2 0.70710678118654752440
/** The \c double representation of a constant quiet NaN. */
#define NAN __builtin_nan("")
/** The \c float representation of a constant quiet NaN.
\p __tag is a string constant like \c "" or \c "123". */
#define nanf(__tagp) __builtin_nanf(__tag)
/** The \c double representation of a constant quiet NaN.
\p __tag is a string constant like \c "" or \c "123". */
#define nan(__tag) __builtin_nan(__tag)
/** The \c long \c double representation of a constant quiet NaN.
\p __tag is a string constant like \c "" or \c "123". */
#define nanl(__tag) __builtin_nanl(__tag)
/** \c double infinity constant. */
#define INFINITY __builtin_inf()
/** \c float infinity constant. */
#define HUGE_VALF __builtin_huge_valf()
/** \c double infinity constant. */
#define HUGE_VAL __builtin_huge_val()
/** \c long \c double infinity constant. */
#define HUGE_VALL __builtin_huge_vall()
#ifndef __DOXYGEN__
#ifndef __ATTR_CONST__
# define __ATTR_CONST__ __attribute__((__const__))
#endif
#ifndef __ATTR_ALWAYS_INLINE__
#define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
#endif
#endif /* ! DOXYGEN */
/** The cosf() function returns the cosine of \a x, measured in radians. */
__ATTR_CONST__ extern float cosf (float x);
/** The cos() function returns the cosine of \a x, measured in radians. */
__ATTR_CONST__ extern double cos (double x);
/** The cosl() function returns the cosine of \a x, measured in radians. */
__ATTR_CONST__ extern long double cosl (long double x);
/** The sinf() function returns the sine of \a x, measured in radians. */
__ATTR_CONST__ extern float sinf (float x);
/** The sin() function returns the sine of \a x, measured in radians. */
__ATTR_CONST__ extern double sin (double x);
/** The sinl() function returns the sine of \a x, measured in radians. */
__ATTR_CONST__ extern long double sinl (long double x);
/** The tanf() function returns the tangent of \a x, measured in radians. */
__ATTR_CONST__ extern float tanf (float x);
/** The tan() function returns the tangent of \a x, measured in radians. */
__ATTR_CONST__ extern double tan (double x);
/** The tanl() function returns the tangent of \a x, measured in radians. */
__ATTR_CONST__ extern long double tanl (long double x);
/** The fabsf() function computes the absolute value of a floating-point number \a x. */
static __ATTR_ALWAYS_INLINE__ float fabsf (float __x)
{
return __builtin_fabsf (__x);
}
/** The fabs() function computes the absolute value of a floating-point number \a x. */
static __ATTR_ALWAYS_INLINE__ double fabs (double __x)
{
return __builtin_fabs (__x);
}
/** The fabsl() function computes the absolute value of a floating-point number \a x. */
static __ATTR_ALWAYS_INLINE__ long double fabsl (long double __x)
{
return __builtin_fabsl (__x);
}
/** The function fmodf() returns the floating-point remainder of <em>x / y</em>. */
__ATTR_CONST__ extern float fmodf (float x, float y);
/** The function fmod() returns the floating-point remainder of <em>x / y</em>. */
__ATTR_CONST__ extern double fmod (double x, double y);
/** The function fmodl() returns the floating-point remainder of <em>x / y</em>. */
__ATTR_CONST__ extern long double fmodl (long double x, long double y);
/** The modff() function breaks the argument \a x into integral and
fractional parts, each of which has the same sign as the argument.
It stores the integral part as a \c float in the object pointed to by
\a iptr.
The modff() function returns the signed fractional part of \a x.
\note This implementation skips writing by zero pointer. However,
the GCC 4.3 can replace this function with inline code that does not
permit to use NULL address for the avoiding of storing. */
extern float modff (float x, float *iptr);
/** The modf() function breaks the argument \a x into integral and
fractional parts, each of which has the same sign as the argument.
It stores the integral part as a \c double in the object pointed to by
\a iptr.
The modf() function returns the signed fractional part of \a x. */
extern double modf (double x, double *iptr);
/** The modfl() function breaks the argument \a x into integral and
fractional parts, each of which has the same sign as the argument.
It stores the integral part as a \c long \c double in the object pointed to by
\a iptr.
The modf() function returns the signed fractional part of \a x. */
extern long double modfl (long double x, long double *iptr);
/** The sqrtf() function returns the non-negative square root of \a x. */
__ATTR_CONST__ extern float sqrtf (float x);
/** The sqrt() function returns the non-negative square root of \a x. */
__ATTR_CONST__ extern double sqrt (double x);
/** The sqrtl() function returns the non-negative square root of \a x. */
__ATTR_CONST__ extern long double sqrtl (long double x);
/** The cbrtf() function returns the cube root of \a x. */
__ATTR_CONST__ extern float cbrtf (float x);
/** The cbrt() function returns the cube root of \a x. */
__ATTR_CONST__ extern double cbrt (double x);
/** The cbrtl() function returns the cube root of \a x. */
__ATTR_CONST__ extern long double cbrtl (long double x);
/** The hypotf() function returns <em>sqrtf(x*x + y*y)</em>. This
is the length of the hypotenuse of a right triangle with sides of
length \a x and \a y, or the distance of the point (\a x, \a
y) from the origin. Using this function instead of the direct
formula is wise, since the error is much smaller. No underflow with
small \a x and \a y. No overflow if result is in range. */
__ATTR_CONST__ extern float hypotf (float x, float y);
/** The hypot() function returns <em>sqrt(x*x + y*y)</em>. This
is the length of the hypotenuse of a right triangle with sides of
length \a x and \a y, or the distance of the point (\a x, \a
y) from the origin. Using this function instead of the direct
formula is wise, since the error is much smaller. No underflow with
small \a x and \a y. No overflow if result is in range. */
__ATTR_CONST__ extern double hypot (double x, double y);
/** The hypotl() function returns <em>sqrtl(x*x + y*y)</em>. This
is the length of the hypotenuse of a right triangle with sides of
length \a x and \a y, or the distance of the point (\a x, \a
y) from the origin. Using this function instead of the direct
formula is wise, since the error is much smaller. No underflow with
small \a x and \a y. No overflow if result is in range. */
__ATTR_CONST__ extern long double hypotl (long double x, long double y);
/** The floorf() function returns the largest integral value less than or
equal to \a x, expressed as a floating-point number. */
__ATTR_CONST__ extern float floorf (float x);
/** The floor() function returns the largest integral value less than or
equal to \a x, expressed as a floating-point number. */
__ATTR_CONST__ extern double floor (double x);
/** The floorl() function returns the largest integral value less than or
equal to \a x, expressed as a floating-point number. */
__ATTR_CONST__ extern long double floorl (long double x);
/** The ceilf() function returns the smallest integral value greater than
or equal to \a x, expressed as a floating-point number. */
__ATTR_CONST__ extern float ceilf (float x);
/** The ceil() function returns the smallest integral value greater than
or equal to \a x, expressed as a floating-point number. */
__ATTR_CONST__ extern double ceil (double x);
/** The ceill() function returns the smallest integral value greater than
or equal to \a x, expressed as a floating-point number. */
__ATTR_CONST__ extern long double ceill (long double x);
/** The frexpf() function breaks a floating-point number into a normalized
fraction and an integral power of 2. It stores the integer in the \c
int object pointed to by \a pexp.
If \a x is a normal float point number, the frexpf() function
returns the value \c v, such that \c v has a magnitude in the
interval [1/2, 1) or zero, and \a x equals \c v times 2 raised to
the power \a pexp. If \a x is zero, both parts of the result are
zero. If \a x is not a finite number, the frexpf() returns \a x as
is and stores 0 by \a pexp.
\note This implementation permits a zero pointer as a directive to
skip a storing the exponent.
*/
extern float frexpf (float x, int *pexp);
/** The frexp() function breaks a floating-point number into a normalized
fraction and an integral power of 2. It stores the integer in the \c
int object pointed to by \a pexp.
If \a x is a normal float point number, the frexp() function
returns the value \c v, such that \c v has a magnitude in the
interval [1/2, 1) or zero, and \a x equals \c v times 2 raised to
the power \a pexp. If \a x is zero, both parts of the result are
zero. If \a x is not a finite number, the frexp() returns \a x as
is and stores 0 by \a pexp. */
extern double frexp (double x, int *pexp);
/** The frexpl() function breaks a floating-point number into a normalized
fraction and an integral power of 2. It stores the integer in the \c
int object pointed to by \a pexp.
If \a x is a normal float point number, the frexpl() function
returns the value \c v, such that \c v has a magnitude in the
interval [1/2, 1) or zero, and \a x equals \c v times 2 raised to
the power \a pexp. If \a x is zero, both parts of the result are
zero. If \a x is not a finite number, the frexpl() returns \a x as
is and stores 0 by \a pexp. */
extern long double frexpl (long double x, int *pexp);
/** The ldexpf() function multiplies a floating-point number by an integral
power of 2. It returns the value of \a x times 2 raised to the power
\a iexp. */
__ATTR_CONST__ extern float ldexpf (float x, int iexp);
/** The ldexp() function multiplies a floating-point number by an integral
power of 2. It returns the value of \a x times 2 raised to the power
\a iexp. */
__ATTR_CONST__ extern double ldexp (double x, int iexp);
/** The ldexpl() function multiplies a floating-point number by an integral
power of 2. It returns the value of \a x times 2 raised to the power
\a iexp. */
__ATTR_CONST__ extern long double ldexpl (long double x, int iexp);
/** The expf() function returns the exponential value of \a x. */
__ATTR_CONST__ extern float expf (float x);
/** The exp() function returns the exponential value of \a x. */
__ATTR_CONST__ extern double exp (double x);
/** The expl() function returns the exponential value of \a x. */
__ATTR_CONST__ extern long double expl (long double x);
/** The coshf() function returns the hyperbolic cosine of \a x. */
__ATTR_CONST__ extern float coshf (float x);
/** The cosh() function returns the hyperbolic cosine of \a x. */
__ATTR_CONST__ extern double cosh (double x);
/** The coshl() function returns the hyperbolic cosine of \a x. */
__ATTR_CONST__ extern long double coshl (long double x);
/** The sinhf() function returns the hyperbolic sine of \a x. */
__ATTR_CONST__ extern float sinhf (float x);
/** The sinh() function returns the hyperbolic sine of \a x. */
__ATTR_CONST__ extern double sinh (double x);
/** The sinhl() function returns the hyperbolic sine of \a x. */
__ATTR_CONST__ extern long double sinhl (long double x);
/** The tanhf() function returns the hyperbolic tangent of \a x. */
__ATTR_CONST__ extern float tanhf (float x);
/** The tanh() function returns the hyperbolic tangent of \a x. */
__ATTR_CONST__ extern double tanh (double x);
/** The tanhl() function returns the hyperbolic tangent of \a x. */
__ATTR_CONST__ extern long double tanhl (long double x);
/** The acosf() function computes the principal value of the arc cosine of
\a x. The returned value is in the range [0, pi] radians. A domain
error occurs for arguments not in the range [−1, +1]. */
__ATTR_CONST__ extern float acosf (float x);
/** The acos() function computes the principal value of the arc cosine of
\a x. The returned value is in the range [0, pi] radians or NaN. */
__ATTR_CONST__ extern double acos (double x);
/** The acosl() function computes the principal value of the arc cosine of
\a x. The returned value is in the range [0, pi] radians or NaN. */
__ATTR_CONST__ extern long double acosl (long double x);
/** The asinf() function computes the principal value of the arc sine of
\a x. The returned value is in the range [−pi/2, pi/2] radians. A
domain error occurs for arguments not in the range [−1, +1]. */
__ATTR_CONST__ extern float asinf (float x);
/** The asin() function computes the principal value of the arc sine of
\a x. The returned value is in the range [−pi/2, pi/2] radians or NaN. */
__ATTR_CONST__ extern double asin (double x);
/** The asinl() function computes the principal value of the arc sine of
\a x. The returned value is in the range [−pi/2, pi/2] radians or NaN. */
__ATTR_CONST__ extern long double asinl (long double x);
/** The atanf() function computes the principal value of the arc tangent
of \a x. The returned value is in the range [−pi/2, pi/2] radians. */
__ATTR_CONST__ extern float atanf (float x);
/** The atan() function computes the principal value of the arc tangent
of \a x. The returned value is in the range [−pi/2, pi/2] radians. */
__ATTR_CONST__ extern double atan (double x);
/** The atanl() function computes the principal value of the arc tangent
of \a x. The returned value is in the range [−pi/2, pi/2] radians. */
__ATTR_CONST__ extern long double atanl (long double x);
/** The atan2f() function computes the principal value of the arc tangent
of <em>y / x</em>, using the signs of both arguments to determine
the quadrant of the return value. The returned value is in the range
[−pi, +pi] radians. */
__ATTR_CONST__ extern float atan2f (float y, float x);
/** The atan2() function computes the principal value of the arc tangent
of <em>y / x</em>, using the signs of both arguments to determine
the quadrant of the return value. The returned value is in the range
[−pi, +pi] radians. */
__ATTR_CONST__ extern double atan2 (double y, double x);
/** The atan2l() function computes the principal value of the arc tangent
of <em>y / x</em>, using the signs of both arguments to determine
the quadrant of the return value. The returned value is in the range
[−pi, +pi] radians. */
__ATTR_CONST__ extern long double atan2l (long double y, long double x);
/** The logf() function returns the natural logarithm of argument \a x. */
__ATTR_CONST__ extern float logf (float x);
/** The log() function returns the natural logarithm of argument \a x. */
__ATTR_CONST__ extern double log (double x);
/** The logl() function returns the natural logarithm of argument \a x. */
__ATTR_CONST__ extern long double logl (long double x);
/** The log10f() function returns the logarithm of argument \a x to base 10. */
__ATTR_CONST__ extern float log10f (float x);
/** The log10() function returns the logarithm of argument \a x to base 10. */
__ATTR_CONST__ extern double log10 (double x);
/** The log10l() function returns the logarithm of argument \a x to base 10. */
__ATTR_CONST__ extern long double log10l (long double x);
/** The function powf() returns the value of \a x to the exponent \a y.
\n Notice that for integer exponents, there is the more efficient
<code>float __builtin_powif(float x, int y)</code>. */
__ATTR_CONST__ extern float powf (float x, float y);
/** The function pow() returns the value of \a x to the exponent \a y.
\n Notice that for integer exponents, there is the more efficient
<code>double __builtin_powi(double x, int y)</code>. */
__ATTR_CONST__ extern double pow (double x, double y);
/** The function powl() returns the value of \a x to the exponent \a y.
\n Notice that for integer exponents, there is the more efficient
<code>long double __builtin_powil(long double x, int y)</code>. */
__ATTR_CONST__ extern long double powl (long double x, long double y);
/** The function isnanf() returns 1 if the argument \a x represents a
"not-a-number" (NaN) object, otherwise 0. */
__ATTR_CONST__ extern int isnanf (float x);
/** The function isnan() returns 1 if the argument \a x represents a
"not-a-number" (NaN) object, otherwise 0. */
__ATTR_CONST__ extern int isnan (double x);
/** The function isnanl() returns 1 if the argument \a x represents a
"not-a-number" (NaN) object, otherwise 0. */
__ATTR_CONST__ extern int isnanl (long double x);
/** The function isinff() returns 1 if the argument \a x is positive
infinity, −1 if \a x is negative infinity, and 0 otherwise. */
__ATTR_CONST__ extern int isinff (float x);
/** The function isinf() returns 1 if the argument \a x is positive
infinity, −1 if \a x is negative infinity, and 0 otherwise. */
__ATTR_CONST__ extern int isinf (double x);
/** The function isinfl() returns 1 if the argument \a x is positive
infinity, −1 if \a x is negative infinity, and 0 otherwise. */
__ATTR_CONST__ extern int isinfl (long double x);
/** The isfinitef() function returns a nonzero value if \a __x is finite:
not plus or minus infinity, and not NaN. */
__ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ int isfinitef (float __x)
{
unsigned char __exp;
__asm__ (
"mov %0, %C1" "\n\t"
"lsl %0" "\n\t"
"mov %0, %D1" "\n\t"
"rol %0"
: "=&r" (__exp)
: "r" (__x) );
return __exp != 0xff;
}
/** The isfinite() function returns a nonzero value if \a __x is finite:
not plus or minus infinity, and not NaN. */
#ifdef __DOXYGEN__
static __ATTR_ALWAYS_INLINE__ int isfinite (double __x);
#elif __SIZEOF_DOUBLE__ == __SIZEOF_FLOAT__
static __ATTR_ALWAYS_INLINE__ int isfinite (double __x)
{
return isfinitef (__x);
}
#else
int isfinite (double __x);
#endif /* double = float */
/** The isfinite() function returns a nonzero value if \a __x is finite:
not plus or minus infinity, and not NaN. */
#ifdef __DOXYGEN__
static __ATTR_ALWAYS_INLINE__ int isfinitel (long double __x);
#elif __SIZEOF_LONG_DOUBLE__ == __SIZEOF_FLOAT__
static __ATTR_ALWAYS_INLINE__ int isfinitel (long double __x)
{
return isfinitef (__x);
}
#else
int isfinitel (long double __x);
#endif /* long double = float */
/** The copysignf() function returns \a __x but with the sign of \a __y.
They work even if \a __x or \a __y are NaN or zero. */
__ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ float copysignf (float __x, float __y)
{
__asm__ (
"bst %D2, 7" "\n\t"
"bld %D0, 7"
: "=r" (__x)
: "0" (__x), "r" (__y));
return __x;
}
/** The copysign() function returns \a __x but with the sign of \a __y.
They work even if \a __x or \a __y are NaN or zero. */
__ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ double copysign (double __x, double __y)
{
__asm__ (
"bst %r1+%2-1, 7" "\n\t"
"bld %r0+%2-1, 7"
: "+r" (__x)
: "r" (__y), "n" (__SIZEOF_DOUBLE__));
return __x;
}
/** The copysignl() function returns \a __x but with the sign of \a __y.
They work even if \a __x or \a __y are NaN or zero. */
__ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ long double copysignl (long double __x, long double __y)
{
__asm__ (
"bst %r1+%2-1, 7" "\n\t"
"bld %r0+%2-1, 7"
: "+r" (__x)
: "r" (__y), "n" (__SIZEOF_LONG_DOUBLE__));
return __x;
}
/** The signbitf() function returns a nonzero value if the value of \a x
has its sign bit set. This is not the same as `\a x < 0.0',
because IEEE 754 floating point allows zero to be signed. The
comparison '−0.0 < 0.0' is false, but `signbit (−0.0)' will return a
nonzero value. */
__ATTR_CONST__ extern int signbitf (float x);
/** The signbit() function returns a nonzero value if the value of \a x
has its sign bit set. This is not the same as `\a x < 0.0',
because IEEE 754 floating point allows zero to be signed. The
comparison '−0.0 < 0.0' is false, but `signbit (−0.0)' will return a
nonzero value. */
__ATTR_CONST__ extern int signbit (double x);
/** The signbitl() function returns a nonzero value if the value of \a x
has its sign bit set. This is not the same as `\a x < 0.0',
because IEEE 754 floating point allows zero to be signed. The
comparison '−0.0 < 0.0' is false, but `signbit (−0.0)' will return a
nonzero value. */
__ATTR_CONST__ extern int signbitl (long double x);
/** The fdimf() function returns <em>max(x − y, 0)</em>. If \a x or
\a y or both are NaN, NaN is returned. */
__ATTR_CONST__ extern float fdimf (float x, float y);
/** The fdim() function returns <em>max(x − y, 0)</em>. If \a x or
\a y or both are NaN, NaN is returned. */
__ATTR_CONST__ extern double fdim (double x, double y);
/** The fdiml() function returns <em>max(x − y, 0)</em>. If \a x or
\a y or both are NaN, NaN is returned. */
__ATTR_CONST__ extern long double fdiml (long double x, long double y);
/** The fmaf() function performs floating-point multiply-add. This is the
operation <em>(x * y) + z</em>, but the intermediate result is
not rounded to the destination type. This can sometimes improve the
precision of a calculation. */
__ATTR_CONST__ extern float fmaf (float x, float y, float z);
/** The fma() function performs floating-point multiply-add. This is the
operation <em>(x * y) + z</em>, but the intermediate result is
not rounded to the destination type. This can sometimes improve the
precision of a calculation. */
__ATTR_CONST__ extern double fma (double x, double y, double z);
/** The fmal() function performs floating-point multiply-add. This is the
operation <em>(x * y) + z</em>, but the intermediate result is
not rounded to the destination type. This can sometimes improve the
precision of a calculation. */
__ATTR_CONST__ extern long double fmal (long double x, long double y, long double z);
/** The fmaxf() function returns the greater of the two values \a x and
\a y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned. */
__ATTR_CONST__ extern float fmaxf (float x, float y);
/** The fmax() function returns the greater of the two values \a x and
\a y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned. */
__ATTR_CONST__ extern double fmax (double x, double y);
/** The fmaxl() function returns the greater of the two values \a x and
\a y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned. */
__ATTR_CONST__ extern long double fmaxl (long double x, long double y);
/** The fminf() function returns the lesser of the two values \a x and
\a y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned. */
__ATTR_CONST__ extern float fminf (float x, float y);
/** The fmin() function returns the lesser of the two values \a x and
\a y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned. */
__ATTR_CONST__ extern double fmin (double x, double y);
/** The fminl() function returns the lesser of the two values \a x and
\a y. If an argument is NaN, the other argument is returned. If
both arguments are NaN, NaN is returned. */
__ATTR_CONST__ extern long double fminl (long double x, long double y);
/** The truncf() function rounds \a x to the nearest integer not larger
in absolute value. */
__ATTR_CONST__ extern float truncf (float x);
/** The trunc() function rounds \a x to the nearest integer not larger
in absolute value. */
__ATTR_CONST__ extern double trunc (double x);
/** The truncl() function rounds \a x to the nearest integer not larger
in absolute value. */
__ATTR_CONST__ extern long double truncl (long double x);
/** The roundf() function rounds \a x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
Overflow is impossible.
\return The rounded value. If \a x is an integral or infinite, \a
x itself is returned. If \a x is \c NaN, then \c NaN is returned. */
__ATTR_CONST__ extern float roundf (float x);
/** The round() function rounds \a x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
Overflow is impossible.
\return The rounded value. If \a x is an integral or infinite, \a
x itself is returned. If \a x is \c NaN, then \c NaN is returned. */
__ATTR_CONST__ extern double round (double x);
/** The roundl() function rounds \a x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
Overflow is impossible.
\return The rounded value. If \a x is an integral or infinite, \a
x itself is returned. If \a x is \c NaN, then \c NaN is returned. */
__ATTR_CONST__ extern long double roundl (long double x);
/** The lroundf() function rounds \a x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
This function is similar to round() function, but it differs in type of
return value and in that an overflow is possible.
\return The rounded long integer value. If \a x is not a finite number
or an overflow was, this realization returns the \c LONG_MIN value
(0x80000000). */
__ATTR_CONST__ extern long lroundf (float x);
/** The lround() function rounds \a x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
This function is similar to round() function, but it differs in type of
return value and in that an overflow is possible.
\return The rounded long integer value. If \a x is not a finite number
or an overflow was, this realization returns the \c LONG_MIN value
(0x80000000). */
__ATTR_CONST__ extern long lround (double x);
/** The lroundl() function rounds \a x to the nearest integer, but rounds
halfway cases away from zero (instead of to the nearest even integer).
This function is similar to round() function, but it differs in type of
return value and in that an overflow is possible.
\return The rounded long integer value. If \a x is not a finite number
or an overflow was, this realization returns the \c LONG_MIN value
(0x80000000). */
__ATTR_CONST__ extern long lroundl (long double x);
/** The lrintf() function rounds \a x to the nearest integer, rounding the
halfway cases to the even integer direction. (That is both 1.5 and 2.5
values are rounded to 2). This function is similar to rintf() function,
but it differs in type of return value and in that an overflow is
possible.
\return The rounded long integer value. If \a x is not a finite
number or an overflow was, this realization returns the \c LONG_MIN
value (0x80000000). */
__ATTR_CONST__ extern long lrintf (float x);
/** The lrint() function rounds \a x to the nearest integer, rounding the
halfway cases to the even integer direction. (That is both 1.5 and 2.5
values are rounded to 2). This function is similar to rint() function,
but it differs in type of return value and in that an overflow is
possible.
\return The rounded long integer value. If \a x is not a finite
number or an overflow was, this realization returns the \c LONG_MIN
value (0x80000000). */
__ATTR_CONST__ extern long lrint (double x);
/** The lrintl() function rounds \a x to the nearest integer, rounding the
halfway cases to the even integer direction. (That is both 1.5 and 2.5
values are rounded to 2). This function is similar to rintl() function,
but it differs in type of return value and in that an overflow is
possible.
\return The rounded long integer value. If \a x is not a finite
number or an overflow was, this realization returns the \c LONG_MIN
value (0x80000000). */
__ATTR_CONST__ extern long lrintl (long double x);
/**@}*/
/**@{*/
/**
\name Non-Standard Math Functions
*/
/** \ingroup avr_math
The function squaref() returns <em>x * x</em>.
\note This function does not belong to the C standard definition. */
__ATTR_CONST__ extern float squaref (float x);
/** The function square() returns <em>x * x</em>.
\note This function does not belong to the C standard definition. */
#if defined(__DOXYGEN__) || __SIZEOF_DOUBLE__ == __SIZEOF_FLOAT__
__ATTR_CONST__ extern double square (double x);
#elif defined(__WITH_LIBF7_MATH__)
__ATTR_CONST__ extern double square (double x) __asm("__f7_square");
#endif
/** The function squarel() returns <em>x * x</em>.
\note This function does not belong to the C standard definition. */
#if defined(__DOXYGEN__) || __SIZEOF_LONG_DOUBLE__ == __SIZEOF_FLOAT__
__ATTR_CONST__ extern long double squarel (long double x);
#elif defined(__WITH_LIBF7_MATH__)
__ATTR_CONST__ extern long double squarel (long double x) __asm("__f7_square");
#endif
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* !__MATH_H */
|