1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id: avr.c,v 1.67 2006/08/22 22:05:19 joerg_wunsch Exp $ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include "avr.h"
#include "lists.h"
#include "pindefs.h"
#include "ppi.h"
#include "safemode.h"
#define DEBUG 0
extern char * progname;
extern char progbuf[];
extern PROGRAMMER * pgm;
extern int do_cycles;
int avr_read_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char data;
OPCODE * readop, * lext;
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
/*
* figure out what opcode to use
*/
if (mem->op[AVR_OP_READ_LO]) {
if (addr & 0x00000001)
readop = mem->op[AVR_OP_READ_HI];
else
readop = mem->op[AVR_OP_READ_LO];
addr = addr / 2;
}
else {
readop = mem->op[AVR_OP_READ];
}
if (readop == NULL) {
#if DEBUG
fprintf(stderr,
"avr_read_byte(): operation not supported on memory type \"%s\"\n",
p->desc);
#endif
return -1;
}
/*
* If this device has a "load extended address" command, issue it.
*/
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
if (lext != NULL) {
memset(cmd, 0, sizeof(cmd));
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr);
pgm->cmd(pgm, cmd, res);
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(readop, cmd);
avr_set_addr(readop, cmd, addr);
pgm->cmd(pgm, cmd, res);
data = 0;
avr_get_output(readop, res, &data);
pgm->pgm_led(pgm, OFF);
*value = data;
return 0;
}
/*
* read a byte of data from the indicated memory region
*/
int avr_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
int rc;
if (pgm->read_byte) {
rc = pgm->read_byte(pgm, p, mem, addr, value);
if (rc == 0) {
return rc;
}
/* read_byte() method failed, try again with default. */
}
return avr_read_byte_default(pgm, p, mem, addr, value);
}
/*
* Return the number of "interesting" bytes in a memory buffer,
* "interesting" being defined as up to the last non-0xff data
* value. This is useful for determining where to stop when dealing
* with "flash" memory, since writing 0xff to flash is typically a
* no-op. Always return an even number since flash is word addressed.
*/
int avr_mem_hiaddr(AVRMEM * mem)
{
int i, n;
/* return the highest non-0xff address regardless of how much
memory was read */
for (i=mem->size-1; i>0; i--) {
if (mem->buf[i] != 0xff) {
n = i+1;
if (n & 0x01)
return n+1;
else
return n;
}
}
return 0;
}
/*
* Read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'. If size =
* 0, read the entire contents, otherwise, read 'size' bytes.
*
* Return the number of bytes read, or < 0 if an error occurs.
*/
int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose)
{
unsigned char rbyte;
unsigned long i;
unsigned char * buf;
AVRMEM * mem;
int rc;
mem = avr_locate_mem(p, memtype);
if (mem == NULL) {
fprintf(stderr, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
buf = mem->buf;
if (size == 0) {
size = mem->size;
}
/*
* start with all 0xff
*/
memset(buf, 0xff, size);
if ((strcmp(mem->desc, "flash")==0) || (strcmp(mem->desc, "eeprom")==0)) {
if (pgm->paged_load != NULL) {
/*
* the programmer supports a paged mode read, perhaps more
* efficiently than we can read it directly, so use its routine
* instead
*/
if (mem->paged) {
rc = pgm->paged_load(pgm, p, mem, mem->page_size, size);
if (rc < 0)
return rc;
}
else {
rc = pgm->paged_load(pgm, p, mem, pgm->page_size, size);
if (rc < 0)
return rc;
}
if (strcasecmp(mem->desc, "flash") == 0)
return avr_mem_hiaddr(mem);
else
return rc;
}
}
if (strcmp(mem->desc, "signature") == 0) {
if (pgm->read_sig_bytes) {
return pgm->read_sig_bytes(pgm, p, mem);
}
}
for (i=0; i<size; i++) {
rc = avr_read_byte(pgm, p, mem, i, &rbyte);
if (rc != 0) {
fprintf(stderr, "avr_read(): error reading address 0x%04lx\n", i);
if (rc == -1)
fprintf(stderr,
" read operation not supported for memory \"%s\"\n",
memtype);
return -2;
}
buf[i] = rbyte;
report_progress(i, size, NULL);
}
if (strcasecmp(mem->desc, "flash") == 0)
return avr_mem_hiaddr(mem);
else
return i;
}
/*
* write a page data at the specified address
*/
int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr)
{
unsigned char cmd[4];
unsigned char res[4];
OPCODE * wp, * lext;
wp = mem->op[AVR_OP_WRITEPAGE];
if (wp == NULL) {
fprintf(stderr,
"avr_write_page(): memory \"%s\" not configured for page writes\n",
mem->desc);
return -1;
}
/*
* if this memory is word-addressable, adjust the address
* accordingly
*/
if ((mem->op[AVR_OP_LOADPAGE_LO]) || (mem->op[AVR_OP_READ_LO]))
addr = addr / 2;
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
/*
* If this device has a "load extended address" command, issue it.
*/
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
if (lext != NULL) {
memset(cmd, 0, sizeof(cmd));
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr);
pgm->cmd(pgm, cmd, res);
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(wp, cmd);
avr_set_addr(wp, cmd, addr);
pgm->cmd(pgm, cmd, res);
/*
* since we don't know what voltage the target AVR is powered by, be
* conservative and delay the max amount the spec says to wait
*/
usleep(mem->max_write_delay);
pgm->pgm_led(pgm, OFF);
return 0;
}
int avr_write_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char r;
int ready;
int tries;
unsigned long start_time;
unsigned long prog_time;
unsigned char b;
unsigned short caddr;
OPCODE * writeop;
int rc;
int readok=0;
struct timeval tv;
if (!mem->paged) {
/*
* check to see if the write is necessary by reading the existing
* value and only write if we are changing the value; we can't
* use this optimization for paged addressing.
*/
rc = avr_read_byte(pgm, p, mem, addr, &b);
if (rc != 0) {
if (rc != -1) {
return -2;
}
/*
* the read operation is not support on this memory type
*/
}
else {
readok = 1;
if (b == data) {
return 0;
}
}
}
/*
* determine which memory opcode to use
*/
if (mem->op[AVR_OP_WRITE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_WRITE_HI];
else
writeop = mem->op[AVR_OP_WRITE_LO];
caddr = addr / 2;
}
else if (mem->paged && mem->op[AVR_OP_LOADPAGE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_LOADPAGE_HI];
else
writeop = mem->op[AVR_OP_LOADPAGE_LO];
caddr = addr / 2;
}
else {
writeop = mem->op[AVR_OP_WRITE];
caddr = addr;
}
if (writeop == NULL) {
#if DEBUG
fprintf(stderr,
"avr_write_byte(): write not supported for memory type \"%s\"\n",
mem->desc);
#endif
return -1;
}
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(writeop, cmd);
avr_set_addr(writeop, cmd, caddr);
avr_set_input(writeop, cmd, data);
pgm->cmd(pgm, cmd, res);
if (mem->paged) {
/*
* in paged addressing, single bytes to be written to the memory
* page complete immediately, we only need to delay when we commit
* the whole page via the avr_write_page() routine.
*/
pgm->pgm_led(pgm, OFF);
return 0;
}
if (readok == 0) {
/*
* read operation not supported for this memory type, just wait
* the max programming time and then return
*/
usleep(mem->max_write_delay); /* maximum write delay */
pgm->pgm_led(pgm, OFF);
return 0;
}
tries = 0;
ready = 0;
while (!ready) {
if ((data == mem->readback[0]) ||
(data == mem->readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(mem->max_write_delay);
rc = avr_read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, OFF);
return -5;
}
}
else {
gettimeofday (&tv, NULL);
start_time = (tv.tv_sec * 1000000) + tv.tv_usec;
do {
/*
* Do polling, but timeout after max_write_delay.
*/
rc = avr_read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -4;
}
gettimeofday (&tv, NULL);
prog_time = (tv.tv_sec * 1000000) + tv.tv_usec;
} while ((r != data) &&
((prog_time-start_time) < mem->max_write_delay));
}
/*
* At this point we either have a valid readback or the
* max_write_delay is expired.
*/
if (r == data) {
ready = 1;
}
else if (mem->pwroff_after_write) {
/*
* The device has been flagged as power-off after write to this
* memory type. The reason we don't just blindly follow the
* flag is that the power-off advice may only apply to some
* memory bits but not all. We only actually power-off the
* device if the data read back does not match what we wrote.
*/
pgm->pgm_led(pgm, OFF);
fprintf(stderr,
"%s: this device must be powered off and back on to continue\n",
progname);
if (pgm->pinno[PPI_AVR_VCC]) {
fprintf(stderr, "%s: attempting to do this now ...\n", progname);
pgm->powerdown(pgm);
usleep(250000);
rc = pgm->initialize(pgm, p);
if (rc < 0) {
fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc);
fprintf(stderr,
"%s: can't re-initialize device after programming the "
"%s bits\n", progname, mem->desc);
fprintf(stderr,
"%s: you must manually power-down the device and restart\n"
"%s: %s to continue.\n",
progname, progname, progname);
return -3;
}
fprintf(stderr, "%s: device was successfully re-initialized\n",
progname);
return 0;
}
}
tries++;
if (!ready && tries > 5) {
/*
* we wrote the data, but after waiting for what should have
* been plenty of time, the memory cell still doesn't match what
* we wrote. Indicate a write error.
*/
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -6;
}
}
pgm->pgm_led(pgm, OFF);
return 0;
}
/*
* write a byte of data at the specified address
*/
int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char safemode_lfuse;
unsigned char safemode_hfuse;
unsigned char safemode_efuse;
unsigned char safemode_fuse;
int rc;
/* If we write the fuses, then we need to tell safemode that they *should* change */
safemode_memfuses(0, &safemode_lfuse, &safemode_hfuse, &safemode_efuse, &safemode_fuse);
if (strcmp(mem->desc, "fuse")==0) {
safemode_fuse = data;
}
if (strcmp(mem->desc, "lfuse")==0) {
safemode_lfuse = data;
}
if (strcmp(mem->desc, "hfuse")==0) {
safemode_hfuse = data;
}
if (strcmp(mem->desc, "efuse")==0) {
safemode_efuse = data;
}
safemode_memfuses(1, &safemode_lfuse, &safemode_hfuse, &safemode_efuse, &safemode_fuse);
if (pgm->write_byte) {
rc = pgm->write_byte(pgm, p, mem, addr, data);
if (rc == 0) {
return rc;
}
/* write_byte() method failed, try again with default. */
}
return avr_write_byte_default(pgm, p, mem, addr, data);
}
/*
* Write the whole memory region of the specified memory from the
* corresponding buffer of the avrpart pointed to by 'p'. Write up to
* 'size' bytes from the buffer. Data is only written if the new data
* value is different from the existing data value. Data beyond
* 'size' bytes is not affected.
*
* Return the number of bytes written, or -1 if an error occurs.
*/
int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose)
{
int rc;
int wsize;
unsigned long i;
unsigned char data;
int werror;
AVRMEM * m;
m = avr_locate_mem(p, memtype);
if (m == NULL) {
fprintf(stderr, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
pgm->err_led(pgm, OFF);
werror = 0;
wsize = m->size;
if (size < wsize) {
wsize = size;
}
else if (size > wsize) {
fprintf(stderr,
"%s: WARNING: %d bytes requested, but memory region is only %d"
"bytes\n"
"%sOnly %d bytes will actually be written\n",
progname, size, wsize,
progbuf, wsize);
}
if ((strcmp(m->desc, "flash")==0) || (strcmp(m->desc, "eeprom")==0)) {
if (pgm->paged_write != NULL) {
/*
* the programmer supports a paged mode write, perhaps more
* efficiently than we can read it directly, so use its routine
* instead
*/
return pgm->paged_write(pgm, p, m, m->page_size, size);
}
}
if (pgm->write_setup) {
pgm->write_setup(pgm, p, m);
}
for (i=0; i<wsize; i++) {
data = m->buf[i];
report_progress(i, wsize, NULL);
rc = avr_write_byte(pgm, p, m, i, data);
if (rc) {
fprintf(stderr, " ***failed; ");
fprintf(stderr, "\n");
pgm->err_led(pgm, ON);
werror = 1;
}
if (m->paged) {
/*
* check to see if it is time to flush the page with a page
* write
*/
if (((i % m->page_size) == m->page_size-1) ||
(i == wsize-1)) {
rc = avr_write_page(pgm, p, m, i);
if (rc) {
fprintf(stderr,
" *** page %ld (addresses 0x%04lx - 0x%04lx) failed "
"to write\n",
i % m->page_size,
i - m->page_size + 1, i);
fprintf(stderr, "\n");
pgm->err_led(pgm, ON);
werror = 1;
}
}
}
if (werror) {
/*
* make sure the error led stay on if there was a previous write
* error, otherwise it gets cleared in avr_write_byte()
*/
pgm->err_led(pgm, ON);
}
}
return i;
}
/*
* read the AVR device's signature bytes
*/
int avr_signature(PROGRAMMER * pgm, AVRPART * p)
{
int rc;
report_progress (0,1,"Reading");
rc = avr_read(pgm, p, "signature", 0, 0);
if (rc < 0) {
fprintf(stderr,
"%s: error reading signature data for part \"%s\", rc=%d\n",
progname, p->desc, rc);
return -1;
}
report_progress (1,1,NULL);
return 0;
}
/*
* Verify the memory buffer of p with that of v. The byte range of v,
* may be a subset of p. The byte range of p should cover the whole
* chip's memory size.
*
* Return the number of bytes verified, or -1 if they don't match.
*/
int avr_verify(AVRPART * p, AVRPART * v, char * memtype, int size)
{
int i;
unsigned char * buf1, * buf2;
int vsize;
AVRMEM * a, * b;
a = avr_locate_mem(p, memtype);
if (a == NULL) {
fprintf(stderr,
"avr_verify(): memory type \"%s\" not defined for part %s\n",
memtype, p->desc);
return -1;
}
b = avr_locate_mem(v, memtype);
if (b == NULL) {
fprintf(stderr,
"avr_verify(): memory type \"%s\" not defined for part %s\n",
memtype, v->desc);
return -1;
}
buf1 = a->buf;
buf2 = b->buf;
vsize = a->size;
if (vsize < size) {
fprintf(stderr,
"%s: WARNING: requested verification for %d bytes\n"
"%s%s memory region only contains %d bytes\n"
"%sOnly %d bytes will be verified.\n",
progname, size,
progbuf, memtype, vsize,
progbuf, vsize);
size = vsize;
}
for (i=0; i<size; i++) {
if (buf1[i] != buf2[i]) {
fprintf(stderr,
"%s: verification error, first mismatch at byte 0x%04x\n"
"%s0x%02x != 0x%02x\n",
progname, i,
progbuf, buf1[i], buf2[i]);
return -1;
}
}
return size;
}
int avr_get_cycle_count(PROGRAMMER * pgm, AVRPART * p, int * cycles)
{
AVRMEM * a;
unsigned int cycle_count = 0;
unsigned char v1;
int rc;
int i;
a = avr_locate_mem(p, "eeprom");
if (a == NULL) {
return -1;
}
for (i=4; i>0; i--) {
rc = avr_read_byte(pgm, p, a, a->size-i, &v1);
if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc);
return -1;
}
cycle_count = (cycle_count << 8) | v1;
}
/*
* If the EEPROM is erased, the cycle count reads 0xffffffff.
* In this case we return a cycle_count of zero.
* So, the calling function don't have to care about whether or not
* the cycle count was initialized.
*/
if (cycle_count == 0xffffffff) {
cycle_count = 0;
}
*cycles = (int) cycle_count;
return 0;
}
int avr_put_cycle_count(PROGRAMMER * pgm, AVRPART * p, int cycles)
{
AVRMEM * a;
unsigned char v1;
int rc;
int i;
a = avr_locate_mem(p, "eeprom");
if (a == NULL) {
return -1;
}
for (i=1; i<=4; i++) {
v1 = cycles & 0xff;
cycles = cycles >> 8;
rc = avr_write_byte(pgm, p, a, a->size-i, v1);
if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc);
return -1;
}
}
return 0;
}
int avr_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int cycles;
int rc;
if (do_cycles) {
rc = avr_get_cycle_count(pgm, p, &cycles);
/*
* Don't update the cycle counter, if read failed
*/
if(rc != 0) {
do_cycles = 0;
}
}
rc = pgm->chip_erase(pgm, p);
/*
* Don't update the cycle counter, if erase failed
*/
if (do_cycles && (rc == 0)) {
cycles++;
fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n",
progname, cycles);
avr_put_cycle_count(pgm, p, cycles);
}
return rc;
}
|