1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to you under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <avro.h>
#include <stdio.h>
#include <stdlib.h>
/* Test code for JIRA Issue AVRO-984.
*
* AVRO-984: Avro-C schema resolution fails on nested array
*
* This program tests schema resolution for nested arrays. For the
* purposes of this test, there are two schemas "old" and "new" which
* are created by reading the same JSON schema.
*
* The test creates and populates a nested array, and serializes it to
* memory. The raw memory is written to a file, primarily to decouple
* writing and reading. Note that the schema is not written to the
* file. The nested array is also printed to the screen.
*
* The binary file is then read using two separate readers -- the
* matched reader and the resolved reader.
*
* In the matched reader case, the "old" and "new" schemas are known
* to match, and therefore no schema resolution is done. The binary
* buffer is deserialized into an avro value and the nested array
* encoded in the avro value is printed to the screen.
*
* In the resolved reader case, the "old" and "new" schemas are not
* known to match, and therefore schema resolution is performed. (Note
* that the schemas *do* match, but we perform schema resolution
* anyway, to test the resolution process). The schema resolution
* appears to succeed. However, once the code tries to perform an
* "avro_value_read()" the code fails to read the nested array into
* the avro value.
*
* Additionally valgrind indicates that conditional jumps are being
* performed based on uninitialized values.
*
* AVRO-C was compiled with CMAKE_INSTALL_PREFIX=avrolib
* The static library (libavro.a) was copied into a subdirectory of avrolib/lib/static
*
* This file was compiled under Linux using:
* gcc -g avro-984-test.c -o avro984 -I../../build/avrolib/include -L../../build/avrolib/lib/static -lavro
*
* The code was tested with valgrind using the command:
* valgrind -v --leak-check=full --track-origins=yes ./avro984
*
*/
// Encode the following json string in NESTED_ARRAY
// {"type":"array", "items": {"type": "array", "items": "long"}}
//
#define NESTED_ARRAY \
"{\"type\":\"array\", \"items\": {\"type\": \"array\", \"items\": \"long\"}}"
avro_schema_t schema_old = NULL;
avro_schema_t schema_new = NULL;
/* Parse schema into a schema data structure */
void init_schema(void)
{
avro_schema_error_t error;
if (avro_schema_from_json(NESTED_ARRAY, sizeof(NESTED_ARRAY),
&schema_old, &error)) {
printf( "Unable to parse old schema\n");
exit(EXIT_FAILURE);
}
if (avro_schema_from_json(NESTED_ARRAY, sizeof(NESTED_ARRAY),
&schema_new, &error)) {
printf( "Unable to parse new schema\n");
exit(EXIT_FAILURE);
}
}
#define try(call, msg) \
do { \
if (call) { \
printf( msg ":\n %s\n", avro_strerror()); \
exit (EXIT_FAILURE); \
} \
} while (0)
/* The input avro_value_t p_array should contain a nested array.
* Print the fields of this nested array to the screen.
*/
int print_array_fields ( avro_value_t *p_array )
{
size_t idx;
size_t length;
avro_type_t val_type;
val_type = avro_value_get_type( p_array );
printf( "Main array type = %d\n", val_type );
try( avro_value_get_size( p_array, &length ),
"Couldn't get array size" );
printf( "Main array length = %d\n", (int) length );
for ( idx = 0; idx < length; idx ++ )
{
avro_value_t subarray;
size_t sublength;
size_t jdx;
const char *unused;
try ( avro_value_get_by_index( p_array, idx, &subarray, &unused ),
"Couldn't get subarray" );
val_type = avro_value_get_type( &subarray );
printf( "Subarray type = %d\n", val_type );
try( avro_value_get_size( &subarray, &sublength ),
"Couldn't get subarray size" );
printf( "Subarray length = %d\n", (int) sublength );
for ( jdx = 0; jdx < sublength; jdx++ )
{
avro_value_t element;
int64_t val;
try ( avro_value_get_by_index( &subarray, jdx, &element, &unused ),
"Couldn't get subarray element" );
val_type = avro_value_get_type( &element );
try ( avro_value_get_long( &element, &val ),
"Couldn't get subarray element value" );
printf( "nested_array[%d][%d]: type = %d value = %lld\n",
(int) idx, (int) jdx, (int) val_type, (long long) val );
}
}
return 0;
}
/* The input avro_value_t p_subarray should contain an array of long
* integers. Add "elements" number of long integers to this array. Set
* the values to be distinct based on the iteration parameter.
*/
int add_subarray( avro_value_t *p_subarray,
int32_t elements,
int32_t iteration )
{
avro_value_t element;
size_t index;
size_t idx;
for ( idx = 0; idx < (size_t) elements; idx ++ )
{
// Append avro array element to subarray
try ( avro_value_append( p_subarray, &element, &index ),
"Error appending element in subarray" );
try ( avro_value_set_long( &element, (iteration+1)*100 + (iteration+1) ),
"Error setting subarray element" );
}
return 0;
}
/* Create a nested array using the schema NESTED_ARRAY. Populate its
* elements with unique values. Serialize the nested array to the
* memory buffer in avro_writer_t. The number of elements in the first
* dimension of the nested array is "elements". The number of elements
* in the second dimension of the nested array is hardcoded to 2.
*/
int add_array( avro_writer_t writer,
int32_t elements )
{
avro_schema_t chosen_schema;
avro_value_iface_t *nested_array_class;
avro_value_t nested;
int32_t idx;
// Select (hardcode) schema to use
chosen_schema = schema_old;
// Create avro class and value
nested_array_class = avro_generic_class_from_schema( chosen_schema );
try ( avro_generic_value_new( nested_array_class, &nested ),
"Error creating instance of record" );
for ( idx = 0; idx < elements; idx ++ )
{
avro_value_t subarray;
size_t index;
// Append avro array element for top level array
try ( avro_value_append( &nested, &subarray, &index ),
"Error appending subarray" );
// Populate array element with subarray of length 2
#define SUBARRAY_LENGTH (2)
try ( add_subarray( &subarray, SUBARRAY_LENGTH, idx ),
"Error populating subarray" );
}
// Write the value to memory
try ( avro_value_write( writer, &nested ),
"Unable to write nested into memory" );
print_array_fields( &nested );
// Release the record
avro_value_decref( &nested );
avro_value_iface_decref( nested_array_class );
return 0;
}
/* Create a raw binary file containing a serialized version of a
* nested array. This file will later be read by
* read_nested_array_file().
*/
int write_nested_array_file ( int64_t buf_len, const char *raw_binary_file_name )
{
char *buf;
avro_writer_t nested_writer;
FILE *fid = NULL;
fprintf( stdout, "Create %s\n", raw_binary_file_name );
// Allocate a buffer
buf = (char *) malloc( buf_len * sizeof( char ) );
if ( buf == NULL )
{
printf( "There was an error creating the nested buffer %s.\n", raw_binary_file_name);
exit(EXIT_FAILURE);
}
/* Create a new memory writer */
nested_writer = avro_writer_memory( buf, buf_len );
if ( nested_writer == NULL )
{
printf( "There was an error creating the buffer for writing %s.\n", raw_binary_file_name);
exit(EXIT_FAILURE);
}
/* Add an array containing 4 subarrays */
printf( "before avro_writer_tell %d\n", (int) avro_writer_tell( nested_writer ) );
#define ARRAY_LENGTH (4)
add_array( nested_writer, ARRAY_LENGTH );
printf( "after avro_writer_tell %d\n", (int) avro_writer_tell( nested_writer ) );
/* Serialize the nested array */
printf( "Serialize the data to a file\n");
/* Delete the nested array if it exists, and create a new one */
remove(raw_binary_file_name);
fid = fopen( raw_binary_file_name, "w+");
if ( fid == NULL )
{
printf( "There was an error creating the file %s.\n", raw_binary_file_name);
exit(EXIT_FAILURE);
}
fwrite( buf, 1, avro_writer_tell( nested_writer ), fid );
fclose(fid);
avro_writer_free( nested_writer );
free(buf);
return 0;
}
/* Read the raw binary file containing a serialized version of a
* nested array, written by write_nested_array_file()
*/
int read_nested_array_file ( int64_t buf_len,
const char *raw_binary_file_name,
avro_schema_t writer_schema,
avro_schema_t reader_schema,
int use_resolving_reader
)
{
char *buf;
FILE *fid = NULL;
avro_reader_t nested_reader;
int64_t file_len;
// For Matched Reader and Resolving Reader
avro_value_iface_t *reader_class;
avro_value_t nested;
// For Resolving Reader
avro_value_iface_t *resolver;
avro_value_t resolved_value;
fprintf( stdout, "Use %s reader\n", use_resolving_reader ? "Resolving":"Matched" );
// Allocate a buffer
buf = (char *) calloc( buf_len, sizeof( char ) );
if ( buf == NULL )
{
printf( "There was an error creating the buffer for reading %s.\n", raw_binary_file_name);
exit(EXIT_FAILURE);
}
// Start with a garbage buffer
memset(buf, 0xff, buf_len );
// Read the file into the buffer
fid = fopen( raw_binary_file_name, "r" );
if ( fid == NULL )
{
printf( "There was an error reading the file %s.\n", raw_binary_file_name);
exit(EXIT_FAILURE);
}
file_len = fread( buf, 1, buf_len, fid );
printf( "Read %d bytes\n", (int) file_len );
fclose(fid);
if ( use_resolving_reader )
{
// Resolving Reader
/* First resolve the writer and reader schemas */
resolver = avro_resolved_writer_new( writer_schema, reader_schema );
if ( !resolver )
{
printf( "Could not create resolver\n");
free(buf);
exit(EXIT_FAILURE);
}
/* Create a value that the resolver can write into. This is just
* an interface value, that is not directly read from.
*/
if ( avro_resolved_writer_new_value( resolver, &resolved_value ) )
{
avro_value_iface_decref( resolver );
free(buf);
exit(EXIT_FAILURE);
}
/* Then create the value with the reader schema, that we are going
* to use to read from.
*/
reader_class = avro_generic_class_from_schema(reader_schema);
try ( avro_generic_value_new( reader_class, &nested ),
"Error creating instance of nested array" );
// When we read the memory using the resolved writer, we want to
// populate the instance of the value with the reader schema. This
// is done by set_dest.
avro_resolved_writer_set_dest(&resolved_value, &nested);
// Create a memory reader
nested_reader = avro_reader_memory( buf, buf_len );
if ( avro_value_read( nested_reader, &resolved_value ) )
{
printf( "Avro value read failed\n" );
avro_value_decref( &nested );
avro_value_iface_decref( reader_class );
avro_value_iface_decref( resolver );
avro_value_decref( &resolved_value );
exit(EXIT_FAILURE);
}
}
else
{
// Matched Reader
reader_class = avro_generic_class_from_schema(reader_schema);
try ( avro_generic_value_new( reader_class, &nested ),
"Error creating instance of nested array" );
// Send the memory in the buffer into the reader
nested_reader = avro_reader_memory( buf, buf_len );
try ( avro_value_read( nested_reader, &nested ),
"Could not read value from memory" );
}
/* Now the resolved record has been read into "nested" which is
* a value of type reader_class
*/
print_array_fields( &nested );
if ( use_resolving_reader )
{
// Resolving Reader
avro_value_decref( &nested );
avro_value_iface_decref( reader_class );
avro_value_iface_decref( resolver );
avro_value_decref( &resolved_value );
}
else
{
// Matched Reader
avro_value_decref( &nested );
avro_value_iface_decref( reader_class );
}
fprintf( stdout, "Done.\n\n");
avro_reader_free( nested_reader );
free(buf);
return 0;
}
/* Top level function to impelement a test for the JIRA issue
* AVRO-984. See detailed documentation at the top of this file.
*/
int main(void)
{
const char *raw_binary_file_name = "nested_array.bin";
int64_t buf_len = 2048;
int use_resolving_reader;
/* Initialize the schema structure from JSON */
init_schema();
printf( "Write the serialized nested array to %s\n", raw_binary_file_name );
write_nested_array_file( buf_len, raw_binary_file_name );
printf("\nNow read all the array back out\n\n");
for ( use_resolving_reader = 0; use_resolving_reader < 2; use_resolving_reader++ )
{
read_nested_array_file( buf_len,
raw_binary_file_name,
schema_old,
schema_new,
use_resolving_reader
);
}
// Close out schemas
avro_schema_decref(schema_old);
avro_schema_decref(schema_new);
// Remove the binary file
remove(raw_binary_file_name);
printf("\n");
return 0;
}
|