File: io.py

package info (click to toggle)
avro-java 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 12,784 kB
  • sloc: java: 58,236; ansic: 27,618; cpp: 15,332; cs: 12,876; python: 10,443; xml: 6,338; php: 3,836; ruby: 3,158; perl: 1,656; sh: 733; lex: 203; yacc: 140; makefile: 7
file content (934 lines) | stat: -rw-r--r-- 32,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
#!/usr/bin/env python3
# -*- mode: python -*-
# -*- coding: utf-8 -*-

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output utilities.

Includes:
 - i/o-specific constants
 - i/o-specific exceptions
 - schema validation
 - leaf value encoding and decoding
 - datum reader/writer stuff (?)

Also includes a generic representation for data, which uses the
following mapping:
 - Schema records are implemented as dict.
 - Schema arrays are implemented as list.
 - Schema maps are implemented as dict.
 - Schema strings are implemented as unicode.
 - Schema bytes are implemented as str.
 - Schema ints are implemented as int.
 - Schema longs are implemented as long.
 - Schema floats are implemented as float.
 - Schema doubles are implemented as float.
 - Schema booleans are implemented as bool.
"""

import binascii
import json
import logging
import struct
import sys

from avro import schema

logger = logging.getLogger(__name__)

# ------------------------------------------------------------------------------
# Constants


INT_MIN_VALUE = -(1 << 31)
INT_MAX_VALUE = (1 << 31) - 1
LONG_MIN_VALUE = -(1 << 63)
LONG_MAX_VALUE = (1 << 63) - 1

STRUCT_INT = struct.Struct('!I')     # big-endian unsigned int
STRUCT_LONG = struct.Struct('!Q')    # big-endian unsigned long long
STRUCT_FLOAT = struct.Struct('!f')   # big-endian float
STRUCT_DOUBLE = struct.Struct('!d')  # big-endian double
STRUCT_CRC32 = struct.Struct('>I')   # big-endian unsigned int


# ------------------------------------------------------------------------------
# Exceptions


class AvroTypeException(schema.AvroException):
  """Raised when datum is not an example of schema."""
  def __init__(self, expected_schema, datum):
    pretty_expected = json.dumps(json.loads(str(expected_schema)), indent=2)
    fail_msg = "The datum %s is not an example of the schema %s"\
               % (datum, pretty_expected)
    schema.AvroException.__init__(self, fail_msg)


class SchemaResolutionException(schema.AvroException):
  def __init__(self, fail_msg, writer_schema=None, reader_schema=None):
    pretty_writers = json.dumps(json.loads(str(writer_schema)), indent=2)
    pretty_readers = json.dumps(json.loads(str(reader_schema)), indent=2)
    if writer_schema: fail_msg += "\nWriter's Schema: %s" % pretty_writers
    if reader_schema: fail_msg += "\nReader's Schema: %s" % pretty_readers
    schema.AvroException.__init__(self, fail_msg)


# ------------------------------------------------------------------------------
# Validate


def Validate(expected_schema, datum):
  """Determines if a python datum is an instance of a schema.

  Args:
    expected_schema: Schema to validate against.
    datum: Datum to validate.
  Returns:
    True if the datum is an instance of the schema.
  """
  schema_type = expected_schema.type
  if schema_type == 'null':
    return datum is None
  elif schema_type == 'boolean':
    return isinstance(datum, bool)
  elif schema_type == 'string':
    return isinstance(datum, str)
  elif schema_type == 'bytes':
    return isinstance(datum, bytes)
  elif schema_type == 'int':
    return (isinstance(datum, int)
        and (INT_MIN_VALUE <= datum <= INT_MAX_VALUE))
  elif schema_type == 'long':
    return (isinstance(datum, int)
        and (LONG_MIN_VALUE <= datum <= LONG_MAX_VALUE))
  elif schema_type in ['float', 'double']:
    return (isinstance(datum, int) or isinstance(datum, float))
  elif schema_type == 'fixed':
    return isinstance(datum, bytes) and (len(datum) == expected_schema.size)
  elif schema_type == 'enum':
    return datum in expected_schema.symbols
  elif schema_type == 'array':
    return (isinstance(datum, list)
        and all(Validate(expected_schema.items, item) for item in datum))
  elif schema_type == 'map':
    return (isinstance(datum, dict)
        and all(isinstance(key, str) for key in datum.keys())
        and all(Validate(expected_schema.values, value)
                for value in datum.values()))
  elif schema_type in ['union', 'error_union']:
    return any(Validate(union_branch, datum)
               for union_branch in expected_schema.schemas)
  elif schema_type in ['record', 'error', 'request']:
    return (isinstance(datum, dict)
        and all(Validate(field.type, datum.get(field.name))
                for field in expected_schema.fields))
  else:
    raise AvroTypeException('Unknown Avro schema type: %r' % schema_type)


# ------------------------------------------------------------------------------
# Decoder/Encoder


class BinaryDecoder(object):
  """Read leaf values."""
  def __init__(self, reader):
    """
    reader is a Python object on which we can call read, seek, and tell.
    """
    self._reader = reader

  @property
  def reader(self):
    """Reports the reader used by this decoder."""
    return self._reader

  def read(self, n):
    """Read n bytes.

    Args:
      n: Number of bytes to read.
    Returns:
      The next n bytes from the input.
    """
    assert (n >= 0), n
    input_bytes = self.reader.read(n)
    assert (len(input_bytes) == n), input_bytes
    return input_bytes

  def read_null(self):
    """
    null is written as zero bytes
    """
    return None

  def read_boolean(self):
    """
    a boolean is written as a single byte
    whose value is either 0 (false) or 1 (true).
    """
    return ord(self.read(1)) == 1

  def read_int(self):
    """
    int and long values are written using variable-length, zig-zag coding.
    """
    return self.read_long()

  def read_long(self):
    """
    int and long values are written using variable-length, zig-zag coding.
    """
    b = ord(self.read(1))
    n = b & 0x7F
    shift = 7
    while (b & 0x80) != 0:
      b = ord(self.read(1))
      n |= (b & 0x7F) << shift
      shift += 7
    datum = (n >> 1) ^ -(n & 1)
    return datum

  def read_float(self):
    """
    A float is written as 4 bytes.
    The float is converted into a 32-bit integer using a method equivalent to
    Java's floatToIntBits and then encoded in little-endian format.
    """
    bits = (((ord(self.read(1)) & 0xff)) |
      ((ord(self.read(1)) & 0xff) <<  8) |
      ((ord(self.read(1)) & 0xff) << 16) |
      ((ord(self.read(1)) & 0xff) << 24))
    return STRUCT_FLOAT.unpack(STRUCT_INT.pack(bits))[0]

  def read_double(self):
    """
    A double is written as 8 bytes.
    The double is converted into a 64-bit integer using a method equivalent to
    Java's doubleToLongBits and then encoded in little-endian format.
    """
    bits = (((ord(self.read(1)) & 0xff)) |
      ((ord(self.read(1)) & 0xff) <<  8) |
      ((ord(self.read(1)) & 0xff) << 16) |
      ((ord(self.read(1)) & 0xff) << 24) |
      ((ord(self.read(1)) & 0xff) << 32) |
      ((ord(self.read(1)) & 0xff) << 40) |
      ((ord(self.read(1)) & 0xff) << 48) |
      ((ord(self.read(1)) & 0xff) << 56))
    return STRUCT_DOUBLE.unpack(STRUCT_LONG.pack(bits))[0]

  def read_bytes(self):
    """
    Bytes are encoded as a long followed by that many bytes of data.
    """
    nbytes = self.read_long()
    assert (nbytes >= 0), nbytes
    return self.read(nbytes)

  def read_utf8(self):
    """
    A string is encoded as a long followed by
    that many bytes of UTF-8 encoded character data.
    """
    input_bytes = self.read_bytes()
    try:
      return input_bytes.decode('utf-8')
    except UnicodeDecodeError as exn:
      logger.error('Invalid UTF-8 input bytes: %r', input_bytes)
      raise exn

  def check_crc32(self, bytes):
    checksum = STRUCT_CRC32.unpack(self.read(4))[0];
    if binascii.crc32(bytes) & 0xffffffff != checksum:
      raise schema.AvroException("Checksum failure")

  def skip_null(self):
    pass

  def skip_boolean(self):
    self.skip(1)

  def skip_int(self):
    self.skip_long()

  def skip_long(self):
    b = ord(self.read(1))
    while (b & 0x80) != 0:
      b = ord(self.read(1))

  def skip_float(self):
    self.skip(4)

  def skip_double(self):
    self.skip(8)

  def skip_bytes(self):
    self.skip(self.read_long())

  def skip_utf8(self):
    self.skip_bytes()

  def skip(self, n):
    self.reader.seek(self.reader.tell() + n)


# ------------------------------------------------------------------------------


class BinaryEncoder(object):
  """Write leaf values."""

  def __init__(self, writer):
    """
    writer is a Python object on which we can call write.
    """
    self._writer = writer

  @property
  def writer(self):
    """Reports the writer used by this encoder."""
    return self._writer


  def write(self, datum):
    """Write a sequence of bytes.

    Args:
      datum: Byte array, as a Python bytes.
    """
    assert isinstance(datum, bytes), ('Expecting bytes, got %r' % datum)
    self.writer.write(datum)

  def WriteByte(self, byte):
    self.writer.write(bytes((byte,)))

  def write_null(self, datum):
    """
    null is written as zero bytes
    """
    pass

  def write_boolean(self, datum):
    """
    a boolean is written as a single byte
    whose value is either 0 (false) or 1 (true).
    """
    # Python maps True to 1 and False to 0.
    self.WriteByte(int(bool(datum)))

  def write_int(self, datum):
    """
    int and long values are written using variable-length, zig-zag coding.
    """
    self.write_long(datum);

  def write_long(self, datum):
    """
    int and long values are written using variable-length, zig-zag coding.
    """
    datum = (datum << 1) ^ (datum >> 63)
    while (datum & ~0x7F) != 0:
      self.WriteByte((datum & 0x7f) | 0x80)
      datum >>= 7
    self.WriteByte(datum)

  def write_float(self, datum):
    """
    A float is written as 4 bytes.
    The float is converted into a 32-bit integer using a method equivalent to
    Java's floatToIntBits and then encoded in little-endian format.
    """
    bits = STRUCT_INT.unpack(STRUCT_FLOAT.pack(datum))[0]
    self.WriteByte((bits) & 0xFF)
    self.WriteByte((bits >> 8) & 0xFF)
    self.WriteByte((bits >> 16) & 0xFF)
    self.WriteByte((bits >> 24) & 0xFF)

  def write_double(self, datum):
    """
    A double is written as 8 bytes.
    The double is converted into a 64-bit integer using a method equivalent to
    Java's doubleToLongBits and then encoded in little-endian format.
    """
    bits = STRUCT_LONG.unpack(STRUCT_DOUBLE.pack(datum))[0]
    self.WriteByte((bits) & 0xFF)
    self.WriteByte((bits >> 8) & 0xFF)
    self.WriteByte((bits >> 16) & 0xFF)
    self.WriteByte((bits >> 24) & 0xFF)
    self.WriteByte((bits >> 32) & 0xFF)
    self.WriteByte((bits >> 40) & 0xFF)
    self.WriteByte((bits >> 48) & 0xFF)
    self.WriteByte((bits >> 56) & 0xFF)

  def write_bytes(self, datum):
    """
    Bytes are encoded as a long followed by that many bytes of data.
    """
    self.write_long(len(datum))
    self.write(datum)

  def write_utf8(self, datum):
    """
    A string is encoded as a long followed by
    that many bytes of UTF-8 encoded character data.
    """
    datum = datum.encode("utf-8")
    self.write_bytes(datum)

  def write_crc32(self, bytes):
    """
    A 4-byte, big-endian CRC32 checksum
    """
    self.write(STRUCT_CRC32.pack(binascii.crc32(bytes) & 0xffffffff));


# ------------------------------------------------------------------------------
# DatumReader/Writer


class DatumReader(object):
  """Deserialize Avro-encoded data into a Python data structure."""
  @staticmethod
  def check_props(schema_one, schema_two, prop_list):
    for prop in prop_list:
      if getattr(schema_one, prop) != getattr(schema_two, prop):
        return False
    return True

  @staticmethod
  def match_schemas(writer_schema, reader_schema):
    w_type = writer_schema.type
    r_type = reader_schema.type
    if 'union' in [w_type, r_type] or 'error_union' in [w_type, r_type]:
      return True
    elif (w_type in schema.PRIMITIVE_TYPES and r_type in schema.PRIMITIVE_TYPES
          and w_type == r_type):
      return True
    elif (w_type == r_type == 'record' and
          DatumReader.check_props(writer_schema, reader_schema,
                                  ['fullname'])):
      return True
    elif (w_type == r_type == 'error' and
          DatumReader.check_props(writer_schema, reader_schema,
                                  ['fullname'])):
      return True
    elif (w_type == r_type == 'request'):
      return True
    elif (w_type == r_type == 'fixed' and
          DatumReader.check_props(writer_schema, reader_schema,
                                  ['fullname', 'size'])):
      return True
    elif (w_type == r_type == 'enum' and
          DatumReader.check_props(writer_schema, reader_schema,
                                  ['fullname'])):
      return True
    elif (w_type == r_type == 'map' and
          DatumReader.check_props(writer_schema.values,
                                  reader_schema.values, ['type'])):
      return True
    elif (w_type == r_type == 'array' and
          DatumReader.check_props(writer_schema.items,
                                  reader_schema.items, ['type'])):
      return True

    # Handle schema promotion
    if w_type == 'int' and r_type in ['long', 'float', 'double']:
      return True
    elif w_type == 'long' and r_type in ['float', 'double']:
      return True
    elif w_type == 'float' and r_type == 'double':
      return True
    return False

  def __init__(self, writer_schema=None, reader_schema=None):
    """
    As defined in the Avro specification, we call the schema encoded
    in the data the "writer's schema", and the schema expected by the
    reader the "reader's schema".
    """
    self._writer_schema = writer_schema
    self._reader_schema = reader_schema

  # read/write properties
  def set_writer_schema(self, writer_schema):
    self._writer_schema = writer_schema
  writer_schema = property(lambda self: self._writer_schema,
                            set_writer_schema)
  def set_reader_schema(self, reader_schema):
    self._reader_schema = reader_schema
  reader_schema = property(lambda self: self._reader_schema,
                            set_reader_schema)

  def read(self, decoder):
    if self.reader_schema is None:
      self.reader_schema = self.writer_schema
    return self.read_data(self.writer_schema, self.reader_schema, decoder)

  def read_data(self, writer_schema, reader_schema, decoder):
    # schema matching
    if not DatumReader.match_schemas(writer_schema, reader_schema):
      fail_msg = 'Schemas do not match.'
      raise SchemaResolutionException(fail_msg, writer_schema, reader_schema)

    # schema resolution: reader's schema is a union, writer's schema is not
    if (writer_schema.type not in ['union', 'error_union']
        and reader_schema.type in ['union', 'error_union']):
      for s in reader_schema.schemas:
        if DatumReader.match_schemas(writer_schema, s):
          return self.read_data(writer_schema, s, decoder)
      fail_msg = 'Schemas do not match.'
      raise SchemaResolutionException(fail_msg, writer_schema, reader_schema)

    # function dispatch for reading data based on type of writer's schema
    if writer_schema.type == 'null':
      return decoder.read_null()
    elif writer_schema.type == 'boolean':
      return decoder.read_boolean()
    elif writer_schema.type == 'string':
      return decoder.read_utf8()
    elif writer_schema.type == 'int':
      return decoder.read_int()
    elif writer_schema.type == 'long':
      return decoder.read_long()
    elif writer_schema.type == 'float':
      return decoder.read_float()
    elif writer_schema.type == 'double':
      return decoder.read_double()
    elif writer_schema.type == 'bytes':
      return decoder.read_bytes()
    elif writer_schema.type == 'fixed':
      return self.read_fixed(writer_schema, reader_schema, decoder)
    elif writer_schema.type == 'enum':
      return self.read_enum(writer_schema, reader_schema, decoder)
    elif writer_schema.type == 'array':
      return self.read_array(writer_schema, reader_schema, decoder)
    elif writer_schema.type == 'map':
      return self.read_map(writer_schema, reader_schema, decoder)
    elif writer_schema.type in ['union', 'error_union']:
      return self.read_union(writer_schema, reader_schema, decoder)
    elif writer_schema.type in ['record', 'error', 'request']:
      return self.read_record(writer_schema, reader_schema, decoder)
    else:
      fail_msg = "Cannot read unknown schema type: %s" % writer_schema.type
      raise schema.AvroException(fail_msg)

  def skip_data(self, writer_schema, decoder):
    if writer_schema.type == 'null':
      return decoder.skip_null()
    elif writer_schema.type == 'boolean':
      return decoder.skip_boolean()
    elif writer_schema.type == 'string':
      return decoder.skip_utf8()
    elif writer_schema.type == 'int':
      return decoder.skip_int()
    elif writer_schema.type == 'long':
      return decoder.skip_long()
    elif writer_schema.type == 'float':
      return decoder.skip_float()
    elif writer_schema.type == 'double':
      return decoder.skip_double()
    elif writer_schema.type == 'bytes':
      return decoder.skip_bytes()
    elif writer_schema.type == 'fixed':
      return self.skip_fixed(writer_schema, decoder)
    elif writer_schema.type == 'enum':
      return self.skip_enum(writer_schema, decoder)
    elif writer_schema.type == 'array':
      return self.skip_array(writer_schema, decoder)
    elif writer_schema.type == 'map':
      return self.skip_map(writer_schema, decoder)
    elif writer_schema.type in ['union', 'error_union']:
      return self.skip_union(writer_schema, decoder)
    elif writer_schema.type in ['record', 'error', 'request']:
      return self.skip_record(writer_schema, decoder)
    else:
      fail_msg = "Unknown schema type: %s" % writer_schema.type
      raise schema.AvroException(fail_msg)

  def read_fixed(self, writer_schema, reader_schema, decoder):
    """
    Fixed instances are encoded using the number of bytes declared
    in the schema.
    """
    return decoder.read(writer_schema.size)

  def skip_fixed(self, writer_schema, decoder):
    return decoder.skip(writer_schema.size)

  def read_enum(self, writer_schema, reader_schema, decoder):
    """
    An enum is encoded by a int, representing the zero-based position
    of the symbol in the schema.
    """
    # read data
    index_of_symbol = decoder.read_int()
    if index_of_symbol >= len(writer_schema.symbols):
      fail_msg = "Can't access enum index %d for enum with %d symbols"\
                 % (index_of_symbol, len(writer_schema.symbols))
      raise SchemaResolutionException(fail_msg, writer_schema, reader_schema)
    read_symbol = writer_schema.symbols[index_of_symbol]

    # schema resolution
    if read_symbol not in reader_schema.symbols:
      fail_msg = "Symbol %s not present in Reader's Schema" % read_symbol
      raise SchemaResolutionException(fail_msg, writer_schema, reader_schema)

    return read_symbol

  def skip_enum(self, writer_schema, decoder):
    return decoder.skip_int()

  def read_array(self, writer_schema, reader_schema, decoder):
    """
    Arrays are encoded as a series of blocks.

    Each block consists of a long count value,
    followed by that many array items.
    A block with count zero indicates the end of the array.
    Each item is encoded per the array's item schema.

    If a block's count is negative,
    then the count is followed immediately by a long block size,
    indicating the number of bytes in the block.
    The actual count in this case
    is the absolute value of the count written.
    """
    read_items = []
    block_count = decoder.read_long()
    while block_count != 0:
      if block_count < 0:
        block_count = -block_count
        block_size = decoder.read_long()
      for i in range(block_count):
        read_items.append(self.read_data(writer_schema.items,
                                         reader_schema.items, decoder))
      block_count = decoder.read_long()
    return read_items

  def skip_array(self, writer_schema, decoder):
    block_count = decoder.read_long()
    while block_count != 0:
      if block_count < 0:
        block_size = decoder.read_long()
        decoder.skip(block_size)
      else:
        for i in range(block_count):
          self.skip_data(writer_schema.items, decoder)
      block_count = decoder.read_long()

  def read_map(self, writer_schema, reader_schema, decoder):
    """
    Maps are encoded as a series of blocks.

    Each block consists of a long count value,
    followed by that many key/value pairs.
    A block with count zero indicates the end of the map.
    Each item is encoded per the map's value schema.

    If a block's count is negative,
    then the count is followed immediately by a long block size,
    indicating the number of bytes in the block.
    The actual count in this case
    is the absolute value of the count written.
    """
    read_items = {}
    block_count = decoder.read_long()
    while block_count != 0:
      if block_count < 0:
        block_count = -block_count
        block_size = decoder.read_long()
      for i in range(block_count):
        key = decoder.read_utf8()
        read_items[key] = self.read_data(writer_schema.values,
                                         reader_schema.values, decoder)
      block_count = decoder.read_long()
    return read_items

  def skip_map(self, writer_schema, decoder):
    block_count = decoder.read_long()
    while block_count != 0:
      if block_count < 0:
        block_size = decoder.read_long()
        decoder.skip(block_size)
      else:
        for i in range(block_count):
          decoder.skip_utf8()
          self.skip_data(writer_schema.values, decoder)
      block_count = decoder.read_long()

  def read_union(self, writer_schema, reader_schema, decoder):
    """
    A union is encoded by first writing a long value indicating
    the zero-based position within the union of the schema of its value.
    The value is then encoded per the indicated schema within the union.
    """
    # schema resolution
    index_of_schema = int(decoder.read_long())
    if index_of_schema >= len(writer_schema.schemas):
      fail_msg = "Can't access branch index %d for union with %d branches"\
                 % (index_of_schema, len(writer_schema.schemas))
      raise SchemaResolutionException(fail_msg, writer_schema, reader_schema)
    selected_writer_schema = writer_schema.schemas[index_of_schema]

    # read data
    return self.read_data(selected_writer_schema, reader_schema, decoder)

  def skip_union(self, writer_schema, decoder):
    index_of_schema = int(decoder.read_long())
    if index_of_schema >= len(writer_schema.schemas):
      fail_msg = "Can't access branch index %d for union with %d branches"\
                 % (index_of_schema, len(writer_schema.schemas))
      raise SchemaResolutionException(fail_msg, writer_schema)
    return self.skip_data(writer_schema.schemas[index_of_schema], decoder)

  def read_record(self, writer_schema, reader_schema, decoder):
    """
    A record is encoded by encoding the values of its fields
    in the order that they are declared. In other words, a record
    is encoded as just the concatenation of the encodings of its fields.
    Field values are encoded per their schema.

    Schema Resolution:
     * the ordering of fields may be different: fields are matched by name.
     * schemas for fields with the same name in both records are resolved
       recursively.
     * if the writer's record contains a field with a name not present in the
       reader's record, the writer's value for that field is ignored.
     * if the reader's record schema has a field that contains a default value,
       and writer's schema does not have a field with the same name, then the
       reader should use the default value from its field.
     * if the reader's record schema has a field with no default value, and
       writer's schema does not have a field with the same name, then the
       field's value is unset.
    """
    # schema resolution
    readers_fields_dict = reader_schema.field_map
    read_record = {}
    for field in writer_schema.fields:
      readers_field = readers_fields_dict.get(field.name)
      if readers_field is not None:
        field_val = self.read_data(field.type, readers_field.type, decoder)
        read_record[field.name] = field_val
      else:
        self.skip_data(field.type, decoder)

    # fill in default values
    if len(readers_fields_dict) > len(read_record):
      writers_fields_dict = writer_schema.field_map
      for field_name, field in readers_fields_dict.items():
        if field_name not in writers_fields_dict:
          if field.has_default:
            field_val = self._read_default_value(field.type, field.default)
            read_record[field.name] = field_val
          else:
            fail_msg = 'No default value for field %s' % field_name
            raise SchemaResolutionException(fail_msg, writer_schema,
                                            reader_schema)
    return read_record

  def skip_record(self, writer_schema, decoder):
    for field in writer_schema.fields:
      self.skip_data(field.type, decoder)

  def _read_default_value(self, field_schema, default_value):
    """
    Basically a JSON Decoder?
    """
    if field_schema.type == 'null':
      return None
    elif field_schema.type == 'boolean':
      return bool(default_value)
    elif field_schema.type == 'int':
      return int(default_value)
    elif field_schema.type == 'long':
      return int(default_value)
    elif field_schema.type in ['float', 'double']:
      return float(default_value)
    elif field_schema.type in ['enum', 'fixed', 'string', 'bytes']:
      return default_value
    elif field_schema.type == 'array':
      read_array = []
      for json_val in default_value:
        item_val = self._read_default_value(field_schema.items, json_val)
        read_array.append(item_val)
      return read_array
    elif field_schema.type == 'map':
      read_map = {}
      for key, json_val in default_value.items():
        map_val = self._read_default_value(field_schema.values, json_val)
        read_map[key] = map_val
      return read_map
    elif field_schema.type in ['union', 'error_union']:
      return self._read_default_value(field_schema.schemas[0], default_value)
    elif field_schema.type == 'record':
      read_record = {}
      for field in field_schema.fields:
        json_val = default_value.get(field.name)
        if json_val is None: json_val = field.default
        field_val = self._read_default_value(field.type, json_val)
        read_record[field.name] = field_val
      return read_record
    else:
      fail_msg = 'Unknown type: %s' % field_schema.type
      raise schema.AvroException(fail_msg)


# ------------------------------------------------------------------------------


class DatumWriter(object):
  """DatumWriter for generic python objects."""
  def __init__(self, writer_schema=None):
    self._writer_schema = writer_schema

  # read/write properties
  def set_writer_schema(self, writer_schema):
    self._writer_schema = writer_schema
  writer_schema = property(lambda self: self._writer_schema,
                            set_writer_schema)

  def write(self, datum, encoder):
    # validate datum
    if not Validate(self.writer_schema, datum):
      raise AvroTypeException(self.writer_schema, datum)

    self.write_data(self.writer_schema, datum, encoder)

  def write_data(self, writer_schema, datum, encoder):
    # function dispatch to write datum
    if writer_schema.type == 'null':
      encoder.write_null(datum)
    elif writer_schema.type == 'boolean':
      encoder.write_boolean(datum)
    elif writer_schema.type == 'string':
      encoder.write_utf8(datum)
    elif writer_schema.type == 'int':
      encoder.write_int(datum)
    elif writer_schema.type == 'long':
      encoder.write_long(datum)
    elif writer_schema.type == 'float':
      encoder.write_float(datum)
    elif writer_schema.type == 'double':
      encoder.write_double(datum)
    elif writer_schema.type == 'bytes':
      encoder.write_bytes(datum)
    elif writer_schema.type == 'fixed':
      self.write_fixed(writer_schema, datum, encoder)
    elif writer_schema.type == 'enum':
      self.write_enum(writer_schema, datum, encoder)
    elif writer_schema.type == 'array':
      self.write_array(writer_schema, datum, encoder)
    elif writer_schema.type == 'map':
      self.write_map(writer_schema, datum, encoder)
    elif writer_schema.type in ['union', 'error_union']:
      self.write_union(writer_schema, datum, encoder)
    elif writer_schema.type in ['record', 'error', 'request']:
      self.write_record(writer_schema, datum, encoder)
    else:
      fail_msg = 'Unknown type: %s' % writer_schema.type
      raise schema.AvroException(fail_msg)

  def write_fixed(self, writer_schema, datum, encoder):
    """
    Fixed instances are encoded using the number of bytes declared
    in the schema.
    """
    encoder.write(datum)

  def write_enum(self, writer_schema, datum, encoder):
    """
    An enum is encoded by a int, representing the zero-based position
    of the symbol in the schema.
    """
    index_of_datum = writer_schema.symbols.index(datum)
    encoder.write_int(index_of_datum)

  def write_array(self, writer_schema, datum, encoder):
    """
    Arrays are encoded as a series of blocks.

    Each block consists of a long count value,
    followed by that many array items.
    A block with count zero indicates the end of the array.
    Each item is encoded per the array's item schema.

    If a block's count is negative,
    then the count is followed immediately by a long block size,
    indicating the number of bytes in the block.
    The actual count in this case
    is the absolute value of the count written.
    """
    if len(datum) > 0:
      encoder.write_long(len(datum))
      for item in datum:
        self.write_data(writer_schema.items, item, encoder)
    encoder.write_long(0)

  def write_map(self, writer_schema, datum, encoder):
    """
    Maps are encoded as a series of blocks.

    Each block consists of a long count value,
    followed by that many key/value pairs.
    A block with count zero indicates the end of the map.
    Each item is encoded per the map's value schema.

    If a block's count is negative,
    then the count is followed immediately by a long block size,
    indicating the number of bytes in the block.
    The actual count in this case
    is the absolute value of the count written.
    """
    if len(datum) > 0:
      encoder.write_long(len(datum))
      for key, val in datum.items():
        encoder.write_utf8(key)
        self.write_data(writer_schema.values, val, encoder)
    encoder.write_long(0)

  def write_union(self, writer_schema, datum, encoder):
    """
    A union is encoded by first writing a long value indicating
    the zero-based position within the union of the schema of its value.
    The value is then encoded per the indicated schema within the union.
    """
    # resolve union
    index_of_schema = -1
    for i, candidate_schema in enumerate(writer_schema.schemas):
      if Validate(candidate_schema, datum):
        index_of_schema = i
    if index_of_schema < 0: raise AvroTypeException(writer_schema, datum)

    # write data
    encoder.write_long(index_of_schema)
    self.write_data(writer_schema.schemas[index_of_schema], datum, encoder)

  def write_record(self, writer_schema, datum, encoder):
    """
    A record is encoded by encoding the values of its fields
    in the order that they are declared. In other words, a record
    is encoded as just the concatenation of the encodings of its fields.
    Field values are encoded per their schema.
    """
    for field in writer_schema.fields:
      self.write_data(field.type, datum.get(field.name), encoder)


if __name__ == '__main__':
  raise Exception('Not a standalone module')