File: alloc_test.c

package info (click to toggle)
aws-crt-python 0.16.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,328 kB
  • sloc: ansic: 330,743; python: 18,949; makefile: 6,271; sh: 3,712; asm: 754; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (322 lines) | stat: -rw-r--r-- 11,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/common/common.h>

#include <aws/common/array_list.h>
#include <aws/common/assert.h>
#include <aws/common/thread.h>
#include <aws/testing/aws_test_harness.h>

#ifdef __MACH__
#    include <CoreFoundation/CoreFoundation.h>
#endif

static void *s_test_alloc_acquire(struct aws_allocator *allocator, size_t size) {
    (void)allocator;
    return (size > 0) ? malloc(size) : NULL;
}

static void s_test_alloc_release(struct aws_allocator *allocator, void *ptr) {
    (void)allocator;
    free(ptr);
}

static void *s_test_realloc(struct aws_allocator *allocator, void *ptr, size_t oldsize, size_t newsize) {
    (void)allocator;
    (void)oldsize;
    /* Realloc should ensure that newsize is never 0 */
    AWS_FATAL_ASSERT(newsize != 0);
    return realloc(ptr, newsize);
}

static void *s_test_calloc(struct aws_allocator *allocator, size_t num, size_t size) {
    (void)allocator;
    return (num > 0 && size > 0) ? calloc(num, size) : NULL;
}

/**
 * Check that we correctly protect against
 * https://wiki.sei.cmu.edu/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations
 * For now, can only test the realloc case, because it returns NULL on error
 * Test the remaining cases once https://github.com/awslabs/aws-c-common/issues/471 is solved
 */
AWS_TEST_CASE(test_alloc_nothing, s_test_alloc_nothing_fn)
static int s_test_alloc_nothing_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;

    struct aws_allocator test_allocator = {.mem_acquire = s_test_alloc_acquire,
                                           .mem_release = s_test_alloc_release,
                                           .mem_realloc = s_test_realloc,
                                           .mem_calloc = s_test_calloc};

    /* realloc should handle the case correctly, return null, and free the memory */
    void *p = aws_mem_acquire(&test_allocator, 12);
    ASSERT_SUCCESS(aws_mem_realloc(&test_allocator, &p, 12, 0));
    ASSERT_NULL(p);
    return 0;
}

/*
 * Small Block Allocator tests
 */
static int s_sba_alloc_free_once(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, false);
    void *mem = aws_mem_acquire(sba, 42);
    ASSERT_NOT_NULL(mem);
    const size_t allocated = aws_mem_tracer_bytes(allocator);
    ASSERT_TRUE(allocated > 0);
    aws_mem_release(sba, mem);
    aws_small_block_allocator_destroy(sba);

    return 0;
}
AWS_TEST_CASE(sba_alloc_free_once, s_sba_alloc_free_once)

#define NUM_TEST_ALLOCS 10000
#define NUM_TEST_THREADS 8
static int s_sba_random_allocs_and_frees(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, false);
    srand(42);

    void *allocs[NUM_TEST_ALLOCS];
    for (size_t count = 0; count < NUM_TEST_ALLOCS; ++count) {
        size_t size = aws_max_size(rand() % 512, 1);
        void *alloc = aws_mem_acquire(sba, size);
        ASSERT_NOT_NULL(alloc);
        allocs[count] = alloc;
    }

    for (size_t count = 0; count < NUM_TEST_ALLOCS; ++count) {
        void *alloc = allocs[count];
        aws_mem_release(sba, alloc);
    }

    aws_small_block_allocator_destroy(sba);

    return 0;
}
AWS_TEST_CASE(sba_random_allocs_and_frees, s_sba_random_allocs_and_frees)

static int s_sba_random_reallocs(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, false);
    srand(128);

    void *alloc = NULL;
    size_t size = 0;
    for (size_t count = 0; count < NUM_TEST_ALLOCS; ++count) {
        size_t old_size = size;
        size = rand() % 4096;
        ASSERT_SUCCESS(aws_mem_realloc(sba, &alloc, old_size, size));
    }
    ASSERT_SUCCESS(aws_mem_realloc(sba, &alloc, size, 0));

    aws_small_block_allocator_destroy(sba);

    return 0;
}
AWS_TEST_CASE(sba_random_reallocs, s_sba_random_reallocs)

struct sba_thread_test_data {
    struct aws_allocator *sba;
    uint32_t thread_idx;
};

static void s_sba_threaded_alloc_worker(void *user_data) {
    struct aws_allocator *sba = ((struct sba_thread_test_data *)user_data)->sba;

    void *allocs[NUM_TEST_ALLOCS];
    for (size_t count = 0; count < NUM_TEST_ALLOCS / NUM_TEST_THREADS; ++count) {
        size_t size = aws_max_size(rand() % 512, 1);
        void *alloc = aws_mem_acquire(sba, size);
        AWS_FATAL_ASSERT(alloc);
        allocs[count] = alloc;
    }

    for (size_t count = 0; count < NUM_TEST_ALLOCS / NUM_TEST_THREADS; ++count) {
        void *alloc = allocs[count];
        aws_mem_release(sba, alloc);
    }
}

static void s_sba_thread_test(struct aws_allocator *allocator, void (*thread_fn)(void *), struct aws_allocator *sba) {
    const struct aws_thread_options *thread_options = aws_default_thread_options();
    struct aws_thread threads[NUM_TEST_THREADS];
    struct sba_thread_test_data thread_data[NUM_TEST_THREADS];
    AWS_ZERO_ARRAY(threads);
    AWS_ZERO_ARRAY(thread_data);
    for (size_t thread_idx = 0; thread_idx < AWS_ARRAY_SIZE(threads); ++thread_idx) {
        struct aws_thread *thread = &threads[thread_idx];
        aws_thread_init(thread, allocator);
        struct sba_thread_test_data *data = &thread_data[thread_idx];
        data->sba = sba;
        data->thread_idx = (uint32_t)thread_idx;
        aws_thread_launch(thread, thread_fn, data, thread_options);
    }

    for (size_t thread_idx = 0; thread_idx < AWS_ARRAY_SIZE(threads); ++thread_idx) {
        struct aws_thread *thread = &threads[thread_idx];
        aws_thread_join(thread);
    }
}

static int s_sba_threaded_allocs_and_frees(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    srand(96);

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, true);

    s_sba_thread_test(allocator, s_sba_threaded_alloc_worker, sba);

    aws_small_block_allocator_destroy(sba);

    return 0;
}
AWS_TEST_CASE(sba_threaded_allocs_and_frees, s_sba_threaded_allocs_and_frees)

static void s_sba_threaded_realloc_worker(void *user_data) {
    struct sba_thread_test_data *thread_data = user_data;
    struct aws_allocator *sba = thread_data->sba;
    void *alloc = NULL;
    size_t size = 0;
    for (size_t count = 0; count < NUM_TEST_ALLOCS / NUM_TEST_THREADS; ++count) {
        size_t old_size = size;
        size = rand() % 1024;
        if (old_size) {
            AWS_FATAL_ASSERT(0 == memcmp(alloc, &thread_data->thread_idx, 1));
        }
        AWS_FATAL_ASSERT(0 == aws_mem_realloc(sba, &alloc, old_size, size));
        /* If there was a value, make sure it's still there */
        if (old_size && size) {
            AWS_FATAL_ASSERT(0 == memcmp(alloc, &thread_data->thread_idx, 1));
        }
        if (size) {
            memset(alloc, (int)thread_data->thread_idx, size);
        }
    }
    AWS_FATAL_ASSERT(0 == aws_mem_realloc(sba, &alloc, size, 0));
}

static int s_sba_threaded_reallocs(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    srand(12);

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, true);

    s_sba_thread_test(allocator, s_sba_threaded_realloc_worker, sba);

    aws_small_block_allocator_destroy(sba);

    return 0;
}
AWS_TEST_CASE(sba_threaded_reallocs, s_sba_threaded_reallocs)

static int s_sba_churn(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    srand(9000);

    struct aws_array_list allocs;
    aws_array_list_init_dynamic(&allocs, allocator, NUM_TEST_ALLOCS, sizeof(void *));

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, false);

    size_t alloc_count = 0;
    while (alloc_count++ < NUM_TEST_ALLOCS * 10) {
        size_t size = aws_max_size(rand() % (2 * 4096), 1);
        void *alloc = aws_mem_acquire(sba, size);
        aws_array_list_push_back(&allocs, &alloc);

        /* randomly free a previous allocation, simulating the real world a bit */
        if ((rand() % allocs.length) > (allocs.length / 2)) {
            size_t idx = rand() % allocs.length;
            aws_array_list_get_at(&allocs, &alloc, idx);
            aws_array_list_erase(&allocs, idx);
            aws_mem_release(sba, alloc);
        }
    }

    /* free all remaining allocations */
    for (size_t idx = 0; idx < allocs.length; ++idx) {
        void *alloc = NULL;
        aws_array_list_get_at(&allocs, &alloc, idx);
        aws_mem_release(sba, alloc);
    }

    aws_array_list_clean_up(&allocs);

    aws_small_block_allocator_destroy(sba);

    return 0;
}
AWS_TEST_CASE(sba_churn, s_sba_churn)

static int s_sba_metrics_test(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_allocator *sba = aws_small_block_allocator_new(allocator, false);

    size_t expected_active_size = 0;
    void *allocs[512] = {0};
    for (int idx = 0; idx < AWS_ARRAY_SIZE(allocs); ++idx) {
        size_t size = idx + 1;
        size_t bin_size = 0;
        ASSERT_SUCCESS(aws_round_up_to_power_of_two(size, &bin_size));
        expected_active_size += bin_size;
        allocs[idx] = aws_mem_acquire(sba, size);

        ASSERT_TRUE(aws_small_block_allocator_bytes_reserved(sba) > aws_small_block_allocator_bytes_active(sba));
        ASSERT_TRUE(expected_active_size <= aws_small_block_allocator_bytes_active(sba));
    }

    /*
     * There are
     *
     *   32 allocations of size < 32 # (bin 0)
     *   32 allocations of 32 < size <= 64 # (bin 1)
     *   64 allocations of 64 < size <= 128 # (bin 2)
     *   128 allocations of 128 < size <= 256 # (bin 3)
     *   256 allocations of 256 < size <= 512 # (bin 4)
     *
     * If we let actual_page_size = allocated_page_size - sizeof(page_header), then we expect to have reserved
     *
     *   (32 + actual_page_size / 32 - 1) / (actual_page_size / 32) # (bin 0)
     *   (32 + actual_page_size / 64 - 1) / (actual_page_size / 64) # (bin 1)
     *   (64 + actual_page_size / 128 - 1) / (actual_page_size / 128) # (bin 2)
     *   (128 + actual_page_size / 256 - 1) / (actual_page_size / 256) # (bin 3)
     *   (256 + actual_page_size / 512 - 1) / (actual_page_size / 512) # (bin 4)
     *
     *   total pages during the allocations.
     */
    size_t actual_page_size = aws_small_block_allocator_page_size_available(sba);

    size_t bin0_pages = (32 + actual_page_size / 32 - 1) / (actual_page_size / 32);
    size_t bin1_pages = (32 + actual_page_size / 64 - 1) / (actual_page_size / 64);
    size_t bin2_pages = (64 + actual_page_size / 128 - 1) / (actual_page_size / 128);
    size_t bin3_pages = (128 + actual_page_size / 256 - 1) / (actual_page_size / 256);
    size_t bin4_pages = (256 + actual_page_size / 512 - 1) / (actual_page_size / 512);
    size_t expected_page_count = bin0_pages + bin1_pages + bin2_pages + bin3_pages + bin4_pages;
    ASSERT_INT_EQUALS(
        expected_page_count * aws_small_block_allocator_page_size(sba), aws_small_block_allocator_bytes_reserved(sba));

    for (int idx = 0; idx < AWS_ARRAY_SIZE(allocs); ++idx) {
        aws_mem_release(sba, allocs[idx]);
    }

    ASSERT_INT_EQUALS(0, aws_small_block_allocator_bytes_active(sba));

    /* after freeing everything, we should have reliniquished all but one page in each bin */
    ASSERT_INT_EQUALS(5 * aws_small_block_allocator_page_size(sba), aws_small_block_allocator_bytes_reserved(sba));

    aws_small_block_allocator_destroy(sba);
    return 0;
}
AWS_TEST_CASE(sba_metrics, s_sba_metrics_test)