File: bus_test.c

package info (click to toggle)
aws-crt-python 0.16.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,328 kB
  • sloc: ansic: 330,743; python: 18,949; makefile: 6,271; sh: 3,712; asm: 754; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (436 lines) | stat: -rw-r--r-- 15,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#include <aws/testing/aws_test_harness.h>

#include <aws/common/bus.h>
#include <aws/common/math.h>

#include <inttypes.h>

static struct {
    int count;
    bool payload_deleted;
} s_sync_test;

static const char s_test_payload[] = "TEST ME SENPAI";

static void s_bus_sync_test_recv(uint64_t address, const void *msg, void *user_data) {
    AWS_FATAL_ASSERT(42 == address);
    AWS_FATAL_ASSERT(0 == strcmp(msg, s_test_payload));
    AWS_FATAL_ASSERT(&s_sync_test == user_data);
    ++s_sync_test.count;
}

static void s_test_payload_dtor(void *payload) {
    (void)payload;
    s_sync_test.payload_deleted = true;
}

static int s_bus_sync_test_send(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_bus_options options = {
        .policy = AWS_BUS_SYNC_RELIABLE,
    };

    struct aws_bus *bus = aws_bus_new(allocator, &options);
    ASSERT_NOT_NULL(bus);
    AWS_ZERO_STRUCT(s_sync_test);

    ASSERT_SUCCESS(aws_bus_subscribe(bus, 42, s_bus_sync_test_recv, &s_sync_test));
    aws_bus_send(bus, 42, (void *)&s_test_payload[0], s_test_payload_dtor);

    ASSERT_INT_EQUALS(1, s_sync_test.count);
    ASSERT_TRUE(s_sync_test.payload_deleted);

    /* reset test and send a bunch of events */
    AWS_ZERO_STRUCT(s_sync_test);

    const int send_count = 100;
    for (int send = 0; send < send_count; ++send) {
        aws_bus_send(bus, 42, (void *)&s_test_payload[0], s_test_payload_dtor);
    }

    ASSERT_INT_EQUALS(send_count, s_sync_test.count);
    ASSERT_TRUE(s_sync_test.payload_deleted);

    aws_bus_unsubscribe(bus, 42, s_bus_sync_test_recv, &s_sync_test);
    aws_bus_destroy(bus);

    return 0;
}
AWS_TEST_CASE(bus_sync_test_send, s_bus_sync_test_send)

static int s_bus_async_test_lifetime(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_bus_options options = {
        .policy = AWS_BUS_ASYNC_RELIABLE,
    };

    struct aws_bus *async_bus = aws_bus_new(allocator, &options);
    ASSERT_NOT_NULL(async_bus);
    aws_bus_destroy(async_bus);

    /* If the background thread didn't exit cleanly, there will be hangs/leaks */

    return 0;
}
AWS_TEST_CASE(bus_async_test_lifetime, s_bus_async_test_lifetime)

static struct {
    uint64_t sum;
    uint64_t expected_sum;
    struct aws_atomic_var call_count;
    struct aws_atomic_var closed;
} s_bus_async;

struct bus_async_msg {
    struct aws_allocator *allocator;
    uint64_t destination;
    bool delivered;
};

static void s_bus_async_msg_dtor(void *data) {
    struct bus_async_msg *msg = data;
    aws_mem_release(msg->allocator, msg);
}

static void s_bus_async_handle_all(uint64_t address, const void *payload, void *user_data) {
    const bool is_close = (address == AWS_BUS_ADDRESS_CLOSE) && payload == NULL;
    const bool is_wildcard = (address > 0 && address < 1024) && payload;
    const bool is_final = (address == 1024) && payload == NULL;
    AWS_FATAL_ASSERT(is_wildcard || is_final || is_close);
    AWS_FATAL_ASSERT(user_data == NULL);
    aws_atomic_fetch_add(&s_bus_async.call_count, (payload != NULL));
}

static void s_bus_async_handle_msg(uint64_t address, const void *payload, void *user_data) {
    const bool is_normal = (address > 0 && address < 1024 && payload);
    const bool is_close = (address == AWS_BUS_ADDRESS_CLOSE && !payload);
    AWS_FATAL_ASSERT(is_normal || is_close);
    AWS_FATAL_ASSERT(user_data == &s_bus_async);
    AWS_FATAL_ASSERT(!payload || ((struct bus_async_msg *)payload)->destination == address);
    if (address != AWS_BUS_ADDRESS_CLOSE) {
        s_bus_async.sum += address;
    }
}

static void s_bus_async_handle_close(uint64_t address, const void *payload, void *user_data) {
    AWS_FATAL_ASSERT(address == 1024 || address == AWS_BUS_ADDRESS_CLOSE);
    AWS_FATAL_ASSERT(user_data == &s_bus_async);
    AWS_FATAL_ASSERT(payload == NULL);

    if (address == 1024) {
        aws_atomic_store_int(&s_bus_async.closed, 1);
    }
}

static int s_bus_async_test_send_single_threaded(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    srand(1024);
    AWS_ZERO_STRUCT(s_bus_async);
    aws_atomic_init_int(&s_bus_async.call_count, 0);
    aws_atomic_init_int(&s_bus_async.closed, 0);

    struct aws_bus_options options = {
        .policy = AWS_BUS_ASYNC_RELIABLE,
        .buffer_size = 64 * 1024,
    };

    struct aws_bus *async_bus = aws_bus_new(allocator, &options);
    ASSERT_NOT_NULL(async_bus);

    /* test sending to all, sending to a bunch of addresses, then close */
    ASSERT_SUCCESS(aws_bus_subscribe(async_bus, AWS_BUS_ADDRESS_ALL, s_bus_async_handle_all, NULL));
    for (int address = 1; address < 1024; ++address) {
        ASSERT_SUCCESS(aws_bus_subscribe(async_bus, address, s_bus_async_handle_msg, &s_bus_async));
    }
    ASSERT_SUCCESS(aws_bus_subscribe(async_bus, 1024, s_bus_async_handle_close, &s_bus_async));

    for (int send = 0; send < 1024; ++send) {
        uint64_t address = aws_max_i32(rand() % 1024, 1);
        struct bus_async_msg *msg = aws_mem_calloc(allocator, 1, sizeof(struct bus_async_msg));
        /* released in s_bus_async_msg_dtor */
        msg->allocator = allocator;
        msg->destination = address;
        s_bus_async.expected_sum += address;
        aws_bus_send(async_bus, address, msg, s_bus_async_msg_dtor);
    }
    aws_bus_send(async_bus, 1024, NULL, NULL);

    /* wait for all messages to be delivered */
    /* global handler should have been called exactly as many times as there were messages, not including close */
    while (aws_atomic_load_int(&s_bus_async.call_count) < 1024) {
        aws_thread_current_sleep(1000 * 1000);
    }
    while (!aws_atomic_load_int(&s_bus_async.closed)) {
        aws_thread_current_sleep(1000 * 1000);
    }

    ASSERT_INT_EQUALS(s_bus_async.expected_sum, s_bus_async.sum);

    aws_bus_destroy(async_bus);

    return 0;
}
AWS_TEST_CASE(bus_async_test_send_single_threaded, s_bus_async_test_send_single_threaded)

static struct {
    struct aws_atomic_var call_count;
    struct aws_atomic_var expected_sum;
    struct aws_atomic_var running_sum;
} s_bus_mt_data;

struct bus_test_ctx {
    struct aws_bus *bus;
    struct aws_allocator *allocator;
};

static void s_async_bus_producer(void *user_data) {
    struct bus_test_ctx *ctx = user_data;
    for (int send = 0; send < 1000; ++send) {
        const uint64_t address = aws_max_i32(rand() % 1024, 1);
        struct bus_async_msg *msg = aws_mem_calloc(ctx->allocator, 1, sizeof(struct bus_async_msg));
        /* released in s_bus_async_msg_dtor */
        msg->allocator = ctx->allocator;
        msg->destination = address;
        aws_atomic_fetch_add(&s_bus_mt_data.expected_sum, (size_t)address);
        aws_bus_send(ctx->bus, address, msg, s_bus_async_msg_dtor);
    }
}

static void s_record_call_count(uint64_t address, const void *payload, void *user_data) {
    (void)payload;
    (void)user_data;
    if (address == AWS_BUS_ADDRESS_CLOSE) {
        return;
    }
    aws_atomic_fetch_add(&s_bus_mt_data.call_count, 1);
}

static void s_address_to_running_sum(uint64_t address, const void *payload, void *user_data) {
    (void)payload;
    (void)user_data;
    if (address == AWS_BUS_ADDRESS_CLOSE) {
        return;
    }
    aws_atomic_fetch_add(&s_bus_mt_data.running_sum, (size_t)address);
}

static int s_bus_async_test_send_multi_threaded(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    srand(4096);

    aws_atomic_init_int(&s_bus_mt_data.call_count, 0);
    aws_atomic_init_int(&s_bus_mt_data.expected_sum, 0);
    aws_atomic_init_int(&s_bus_mt_data.running_sum, 0);

    struct aws_bus_options options = {
        .policy = AWS_BUS_ASYNC_RELIABLE,
        .buffer_size = 512 * 1024,
    };

    struct aws_bus *bus = aws_bus_new(allocator, &options);
    ASSERT_NOT_NULL(bus);

    ASSERT_SUCCESS(aws_bus_subscribe(bus, AWS_BUS_ADDRESS_ALL, s_record_call_count, NULL));
    for (int address = 1; address < 1024; ++address) {
        ASSERT_SUCCESS(aws_bus_subscribe(bus, address, s_address_to_running_sum, &s_bus_mt_data));
    }

    /* test sending to a bunch of addresses from many threads */
    struct bus_test_ctx thread_ctx = {
        .bus = bus,
        .allocator = allocator,
    };
    AWS_VARIABLE_LENGTH_ARRAY(struct aws_thread, threads, 8);
    for (int t = 0; t < AWS_ARRAY_SIZE(threads); ++t) {
        aws_thread_init(&threads[t], allocator);
        ASSERT_SUCCESS(aws_thread_launch(&threads[t], s_async_bus_producer, &thread_ctx, aws_default_thread_options()));
    }

    /* wait for all of the wildcard messages to be delivered */
    while (aws_atomic_load_int(&s_bus_mt_data.call_count) < AWS_ARRAY_SIZE(threads) * 1000) {
        aws_thread_current_sleep(1000 * 1000);
    }

    for (int t = 0; t < AWS_ARRAY_SIZE(threads); ++t) {
        aws_thread_join(&threads[t]);
        aws_thread_clean_up(&threads[t]);
    }

    ASSERT_INT_EQUALS(
        aws_atomic_load_int(&s_bus_mt_data.expected_sum), aws_atomic_load_int(&s_bus_mt_data.running_sum));
    ASSERT_INT_EQUALS(AWS_ARRAY_SIZE(threads) * 1000, aws_atomic_load_int(&s_bus_mt_data.call_count));

    aws_bus_destroy(bus);

    return 0;
}
AWS_TEST_CASE(bus_async_test_send_multi_threaded, s_bus_async_test_send_multi_threaded)

struct {
    struct aws_atomic_var recv_count;
    struct aws_atomic_var fail_count;
    struct aws_atomic_var send_count;
} s_bus_async_churn_data;

static void s_bus_async_test_churn_listener(uint64_t address, const void *payload, void *user_data) {
    (void)user_data;
    if (address == AWS_BUS_ADDRESS_CLOSE) {
        return;
    }
    struct bus_async_msg *msg = (void *)payload;
    msg->delivered = true;
    aws_atomic_fetch_add(&s_bus_async_churn_data.recv_count, (address != AWS_BUS_ADDRESS_CLOSE));
}

/* Record that message was not delivered */
static void s_bus_async_test_churn_msg_dtor(void *data) {
    struct bus_async_msg *msg = data;
    aws_atomic_fetch_add(&s_bus_async_churn_data.fail_count, !msg->delivered);
    s_bus_async_msg_dtor(data);
}

/* This listener isn't important, it just gets randomly added/removed during churn */
static void s_bus_async_test_churn_dummy_listener(const uint64_t address, const void *payload, void *user_data) {
    (void)address;
    (void)payload;
    (void)user_data;
}

struct producer_data {
    struct aws_bus *bus;
    struct aws_allocator *allocator;
    int index;
    struct aws_atomic_var started;
    struct aws_atomic_var finished;
};

static void s_bus_async_test_churn_worker(void *user_data) {
    struct producer_data *producer = user_data;
    struct aws_bus *bus = producer->bus;

    aws_atomic_store_int(&producer->started, 1);
    AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Producer thread %d starting", producer->index);

    for (int send = 0; send < 10000; ++send) {
        const uint64_t address = aws_max_i32(rand() % 1024, 1);
        const int roll = (rand() % 10);
        if (roll == 0) {
            aws_bus_unsubscribe(bus, address, s_bus_async_test_churn_dummy_listener, NULL);
        } else if (roll < 8) {
            struct bus_async_msg *msg = aws_mem_calloc(producer->allocator, 1, sizeof(struct bus_async_msg));
            /* released in s_bus_async_msg_dtor */
            msg->allocator = producer->allocator;
            msg->destination = address;
            bool sent = aws_bus_send(bus, address, msg, s_bus_async_test_churn_msg_dtor) == AWS_OP_SUCCESS;
            AWS_FATAL_ASSERT(sent);
            aws_atomic_fetch_add(&s_bus_async_churn_data.send_count, sent);
        } else {
            aws_bus_subscribe(bus, address, s_bus_async_test_churn_dummy_listener, NULL);
        }
    }

    aws_atomic_store_int(&producer->finished, 1);
    AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Producer thread %d finished", producer->index);
}

/* test subscribing, unsubscribing, sending, all from any thread on an unreliable bus */
static int s_bus_async_test_churn(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    const uint64_t wait_ns = 15 * 1000 * 1000; /* 15 ms */

    aws_atomic_init_int(&s_bus_async_churn_data.recv_count, 0);
    aws_atomic_init_int(&s_bus_async_churn_data.send_count, 0);
    aws_atomic_init_int(&s_bus_async_churn_data.fail_count, 0);

    struct aws_bus_options options = {
        .policy = AWS_BUS_ASYNC_UNRELIABLE,
        .buffer_size = 1024 * 1024,
    };

    struct aws_bus *bus = aws_bus_new(allocator, &options);
    ASSERT_NOT_NULL(bus);

    /* count all messages sent on all addresses */
    for (int address = 1; address < 1024; ++address) {
        ASSERT_SUCCESS(aws_bus_subscribe(bus, address, s_bus_async_test_churn_listener, NULL));
    }

    /* test sending to a bunch of addresses from many threads */
    struct aws_thread threads[8];
    struct producer_data thread_data[AWS_ARRAY_SIZE(threads)];
    const int num_threads = AWS_ARRAY_SIZE(threads);
    for (int t = 0; t < num_threads; ++t) {
        aws_thread_init(&threads[t], allocator);
        struct producer_data *producer = &thread_data[t];
        producer->bus = bus;
        producer->allocator = allocator;
        producer->index = t;
        aws_atomic_store_int(&producer->started, 0);
        aws_atomic_init_int(&producer->finished, 0);
        AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Launching producer thread %d", t);
        ASSERT_SUCCESS(aws_thread_launch(
            &threads[t], s_bus_async_test_churn_worker, &thread_data[t], aws_default_thread_options()));
    }

    for (int t = 0; t < num_threads; ++t) {
        struct producer_data *producer = &thread_data[t];
        while (!aws_atomic_load_int(&producer->started)) {
            AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Waiting for producer thread %d to start", t);
            aws_thread_current_sleep(wait_ns);
        }
        AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Producer thread %d is running", t);
    }

    /* wait for all producer threads to finish sending */
    for (int t = 0; t < num_threads; ++t) {
        struct producer_data *producer = &thread_data[t];
        AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Waiting for producer thread %d to finish", t);
        while (!aws_atomic_load_int(&producer->finished)) {
            aws_thread_current_sleep(wait_ns);
        }
        AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Producer thread %d is finished", t);
    }

    for (int t = 0; t < num_threads; ++t) {
        AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Joining/cleaning up producer thread %d", t);
        aws_thread_join(&threads[t]);
        aws_thread_clean_up(&threads[t]);
    }

    AWS_LOGF_TRACE(AWS_LS_COMMON_TEST, "Cleaning up test bus");

    aws_bus_destroy(bus);

    size_t recv_count = aws_atomic_load_int(&s_bus_async_churn_data.recv_count);
    size_t fail_count = aws_atomic_load_int(&s_bus_async_churn_data.fail_count);
    size_t send_count = aws_atomic_load_int(&s_bus_async_churn_data.send_count);
    AWS_LOGF_INFO(
        AWS_LS_COMMON_TEST, "BUS CHURN TEST: sent: %zu, recv: %zu, fail: %zu", send_count, recv_count, fail_count);
    /* Ensure SOME messages made it */
    ASSERT_TRUE(send_count > 0);
    ASSERT_TRUE(recv_count > 0);
    /* ensure every send is accounted for */
    ASSERT_TRUE(send_count == fail_count + recv_count);

    return 0;
}
AWS_TEST_CASE(bus_async_test_churn, s_bus_async_test_churn);