1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_hash.h"
#include "crypto/s2n_fips.h"
#include "crypto/s2n_hmac.h"
#include "crypto/s2n_openssl.h"
#include "error/s2n_errno.h"
#include "utils/s2n_safety.h"
static bool s2n_use_custom_md5_sha1()
{
#if defined(S2N_LIBCRYPTO_SUPPORTS_EVP_MD5_SHA1_HASH)
return false;
#else
return true;
#endif
}
static bool s2n_use_evp_impl()
{
return s2n_is_in_fips_mode();
}
bool s2n_hash_evp_fully_supported()
{
return s2n_use_evp_impl() && !s2n_use_custom_md5_sha1();
}
const EVP_MD *s2n_hash_alg_to_evp_md(s2n_hash_algorithm alg)
{
switch (alg) {
case S2N_HASH_MD5:
return EVP_md5();
case S2N_HASH_SHA1:
return EVP_sha1();
case S2N_HASH_SHA224:
return EVP_sha224();
case S2N_HASH_SHA256:
return EVP_sha256();
case S2N_HASH_SHA384:
return EVP_sha384();
case S2N_HASH_SHA512:
return EVP_sha512();
#if defined(S2N_LIBCRYPTO_SUPPORTS_EVP_MD5_SHA1_HASH)
case S2N_HASH_MD5_SHA1:
return EVP_md5_sha1();
#endif
default:
return NULL;
}
}
int s2n_hash_digest_size(s2n_hash_algorithm alg, uint8_t *out)
{
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(out, sizeof(*out)), S2N_ERR_PRECONDITION_VIOLATION);
/* clang-format off */
switch (alg) {
case S2N_HASH_NONE: *out = 0; break;
case S2N_HASH_MD5: *out = MD5_DIGEST_LENGTH; break;
case S2N_HASH_SHA1: *out = SHA_DIGEST_LENGTH; break;
case S2N_HASH_SHA224: *out = SHA224_DIGEST_LENGTH; break;
case S2N_HASH_SHA256: *out = SHA256_DIGEST_LENGTH; break;
case S2N_HASH_SHA384: *out = SHA384_DIGEST_LENGTH; break;
case S2N_HASH_SHA512: *out = SHA512_DIGEST_LENGTH; break;
case S2N_HASH_MD5_SHA1: *out = MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH; break;
default:
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
/* clang-format on */
return S2N_SUCCESS;
}
/* NOTE: s2n_hash_const_time_get_currently_in_hash_block takes advantage of the fact that
* hash_block_size is a power of 2. This is true for all hashes we currently support
* If this ever becomes untrue, this would require fixing*/
int s2n_hash_block_size(s2n_hash_algorithm alg, uint64_t *block_size)
{
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(block_size, sizeof(*block_size)), S2N_ERR_PRECONDITION_VIOLATION);
/* clang-format off */
switch (alg) {
case S2N_HASH_NONE: *block_size = 64; break;
case S2N_HASH_MD5: *block_size = 64; break;
case S2N_HASH_SHA1: *block_size = 64; break;
case S2N_HASH_SHA224: *block_size = 64; break;
case S2N_HASH_SHA256: *block_size = 64; break;
case S2N_HASH_SHA384: *block_size = 128; break;
case S2N_HASH_SHA512: *block_size = 128; break;
case S2N_HASH_MD5_SHA1: *block_size = 64; break;
default:
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
/* clang-format on */
return S2N_SUCCESS;
}
/* Return true if hash algorithm is available, false otherwise. */
bool s2n_hash_is_available(s2n_hash_algorithm alg)
{
switch (alg) {
case S2N_HASH_MD5:
case S2N_HASH_MD5_SHA1:
/* return false if in FIPS mode, as MD5 algs are not available in FIPS mode. */
return !s2n_is_in_fips_mode();
case S2N_HASH_NONE:
case S2N_HASH_SHA1:
case S2N_HASH_SHA224:
case S2N_HASH_SHA256:
case S2N_HASH_SHA384:
case S2N_HASH_SHA512:
return true;
case S2N_HASH_SENTINEL:
return false;
}
return false;
}
int s2n_hash_is_ready_for_input(struct s2n_hash_state *state)
{
POSIX_PRECONDITION(s2n_hash_state_validate(state));
return state->is_ready_for_input;
}
static int s2n_low_level_hash_new(struct s2n_hash_state *state)
{
/* s2n_hash_new will always call the corresponding implementation of the s2n_hash
* being used. For the s2n_low_level_hash implementation, new is a no-op.
*/
*state = (struct s2n_hash_state){ 0 };
return S2N_SUCCESS;
}
static int s2n_low_level_hash_init(struct s2n_hash_state *state, s2n_hash_algorithm alg)
{
switch (alg) {
case S2N_HASH_NONE:
break;
case S2N_HASH_MD5:
POSIX_GUARD_OSSL(MD5_Init(&state->digest.low_level.md5), S2N_ERR_HASH_INIT_FAILED);
break;
case S2N_HASH_SHA1:
POSIX_GUARD_OSSL(SHA1_Init(&state->digest.low_level.sha1), S2N_ERR_HASH_INIT_FAILED);
break;
case S2N_HASH_SHA224:
POSIX_GUARD_OSSL(SHA224_Init(&state->digest.low_level.sha224), S2N_ERR_HASH_INIT_FAILED);
break;
case S2N_HASH_SHA256:
POSIX_GUARD_OSSL(SHA256_Init(&state->digest.low_level.sha256), S2N_ERR_HASH_INIT_FAILED);
break;
case S2N_HASH_SHA384:
POSIX_GUARD_OSSL(SHA384_Init(&state->digest.low_level.sha384), S2N_ERR_HASH_INIT_FAILED);
break;
case S2N_HASH_SHA512:
POSIX_GUARD_OSSL(SHA512_Init(&state->digest.low_level.sha512), S2N_ERR_HASH_INIT_FAILED);
break;
case S2N_HASH_MD5_SHA1:
POSIX_GUARD_OSSL(SHA1_Init(&state->digest.low_level.md5_sha1.sha1), S2N_ERR_HASH_INIT_FAILED);
POSIX_GUARD_OSSL(MD5_Init(&state->digest.low_level.md5_sha1.md5), S2N_ERR_HASH_INIT_FAILED);
break;
default:
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
state->alg = alg;
state->is_ready_for_input = 1;
state->currently_in_hash = 0;
return 0;
}
static int s2n_low_level_hash_update(struct s2n_hash_state *state, const void *data, uint32_t size)
{
POSIX_ENSURE(state->is_ready_for_input, S2N_ERR_HASH_NOT_READY);
switch (state->alg) {
case S2N_HASH_NONE:
break;
case S2N_HASH_MD5:
POSIX_GUARD_OSSL(MD5_Update(&state->digest.low_level.md5, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
case S2N_HASH_SHA1:
POSIX_GUARD_OSSL(SHA1_Update(&state->digest.low_level.sha1, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
case S2N_HASH_SHA224:
POSIX_GUARD_OSSL(SHA224_Update(&state->digest.low_level.sha224, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
case S2N_HASH_SHA256:
POSIX_GUARD_OSSL(SHA256_Update(&state->digest.low_level.sha256, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
case S2N_HASH_SHA384:
POSIX_GUARD_OSSL(SHA384_Update(&state->digest.low_level.sha384, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
case S2N_HASH_SHA512:
POSIX_GUARD_OSSL(SHA512_Update(&state->digest.low_level.sha512, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
case S2N_HASH_MD5_SHA1:
POSIX_GUARD_OSSL(SHA1_Update(&state->digest.low_level.md5_sha1.sha1, data, size), S2N_ERR_HASH_UPDATE_FAILED);
POSIX_GUARD_OSSL(MD5_Update(&state->digest.low_level.md5_sha1.md5, data, size), S2N_ERR_HASH_UPDATE_FAILED);
break;
default:
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
POSIX_ENSURE(size <= (UINT64_MAX - state->currently_in_hash), S2N_ERR_INTEGER_OVERFLOW);
state->currently_in_hash += size;
return S2N_SUCCESS;
}
static int s2n_low_level_hash_digest(struct s2n_hash_state *state, void *out, uint32_t size)
{
POSIX_ENSURE(state->is_ready_for_input, S2N_ERR_HASH_NOT_READY);
switch (state->alg) {
case S2N_HASH_NONE:
break;
case S2N_HASH_MD5:
POSIX_ENSURE_EQ(size, MD5_DIGEST_LENGTH);
POSIX_GUARD_OSSL(MD5_Final(out, &state->digest.low_level.md5), S2N_ERR_HASH_DIGEST_FAILED);
break;
case S2N_HASH_SHA1:
POSIX_ENSURE_EQ(size, SHA_DIGEST_LENGTH);
POSIX_GUARD_OSSL(SHA1_Final(out, &state->digest.low_level.sha1), S2N_ERR_HASH_DIGEST_FAILED);
break;
case S2N_HASH_SHA224:
POSIX_ENSURE_EQ(size, SHA224_DIGEST_LENGTH);
POSIX_GUARD_OSSL(SHA224_Final(out, &state->digest.low_level.sha224), S2N_ERR_HASH_DIGEST_FAILED);
break;
case S2N_HASH_SHA256:
POSIX_ENSURE_EQ(size, SHA256_DIGEST_LENGTH);
POSIX_GUARD_OSSL(SHA256_Final(out, &state->digest.low_level.sha256), S2N_ERR_HASH_DIGEST_FAILED);
break;
case S2N_HASH_SHA384:
POSIX_ENSURE_EQ(size, SHA384_DIGEST_LENGTH);
POSIX_GUARD_OSSL(SHA384_Final(out, &state->digest.low_level.sha384), S2N_ERR_HASH_DIGEST_FAILED);
break;
case S2N_HASH_SHA512:
POSIX_ENSURE_EQ(size, SHA512_DIGEST_LENGTH);
POSIX_GUARD_OSSL(SHA512_Final(out, &state->digest.low_level.sha512), S2N_ERR_HASH_DIGEST_FAILED);
break;
case S2N_HASH_MD5_SHA1:
POSIX_ENSURE_EQ(size, MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH);
POSIX_GUARD_OSSL(SHA1_Final(((uint8_t *) out) + MD5_DIGEST_LENGTH, &state->digest.low_level.md5_sha1.sha1), S2N_ERR_HASH_DIGEST_FAILED);
POSIX_GUARD_OSSL(MD5_Final(out, &state->digest.low_level.md5_sha1.md5), S2N_ERR_HASH_DIGEST_FAILED);
break;
default:
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
state->currently_in_hash = 0;
state->is_ready_for_input = 0;
return 0;
}
static int s2n_low_level_hash_copy(struct s2n_hash_state *to, struct s2n_hash_state *from)
{
POSIX_CHECKED_MEMCPY(to, from, sizeof(struct s2n_hash_state));
return 0;
}
static int s2n_low_level_hash_reset(struct s2n_hash_state *state)
{
/* hash_init resets the ready_for_input and currently_in_hash fields. */
return s2n_low_level_hash_init(state, state->alg);
}
static int s2n_low_level_hash_free(struct s2n_hash_state *state)
{
/* s2n_hash_free will always call the corresponding implementation of the s2n_hash
* being used. For the s2n_low_level_hash implementation, free is a no-op.
*/
state->is_ready_for_input = 0;
return S2N_SUCCESS;
}
static int s2n_evp_hash_new(struct s2n_hash_state *state)
{
POSIX_ENSURE_REF(state->digest.high_level.evp.ctx = S2N_EVP_MD_CTX_NEW());
if (s2n_use_custom_md5_sha1()) {
POSIX_ENSURE_REF(state->digest.high_level.evp_md5_secondary.ctx = S2N_EVP_MD_CTX_NEW());
}
state->is_ready_for_input = 0;
state->currently_in_hash = 0;
return S2N_SUCCESS;
}
static int s2n_evp_hash_allow_md5_for_fips(struct s2n_hash_state *state)
{
/* This is only to be used for s2n_hash_states that will require MD5 to be used
* to comply with the TLS 1.0 and 1.1 RFC's for the PRF. MD5 cannot be used
* outside of the TLS 1.0 and 1.1 PRF when in FIPS mode. When needed, this must
* be called prior to s2n_hash_init().
*/
POSIX_GUARD(s2n_digest_allow_md5_for_fips(&state->digest.high_level.evp));
if (s2n_use_custom_md5_sha1()) {
POSIX_GUARD(s2n_digest_allow_md5_for_fips(&state->digest.high_level.evp_md5_secondary));
}
return S2N_SUCCESS;
}
static int s2n_evp_hash_init(struct s2n_hash_state *state, s2n_hash_algorithm alg)
{
POSIX_ENSURE_REF(state->digest.high_level.evp.ctx);
state->alg = alg;
state->is_ready_for_input = 1;
state->currently_in_hash = 0;
if (alg == S2N_HASH_NONE) {
return S2N_SUCCESS;
}
if (alg == S2N_HASH_MD5_SHA1 && s2n_use_custom_md5_sha1()) {
POSIX_ENSURE_REF(state->digest.high_level.evp_md5_secondary.ctx);
POSIX_GUARD_OSSL(EVP_DigestInit_ex(state->digest.high_level.evp.ctx, EVP_sha1(), NULL), S2N_ERR_HASH_INIT_FAILED);
POSIX_GUARD_OSSL(EVP_DigestInit_ex(state->digest.high_level.evp_md5_secondary.ctx, EVP_md5(), NULL), S2N_ERR_HASH_INIT_FAILED);
return S2N_SUCCESS;
}
POSIX_ENSURE_REF(s2n_hash_alg_to_evp_md(alg));
POSIX_GUARD_OSSL(EVP_DigestInit_ex(state->digest.high_level.evp.ctx, s2n_hash_alg_to_evp_md(alg), NULL), S2N_ERR_HASH_INIT_FAILED);
return S2N_SUCCESS;
}
static int s2n_evp_hash_update(struct s2n_hash_state *state, const void *data, uint32_t size)
{
POSIX_ENSURE(state->is_ready_for_input, S2N_ERR_HASH_NOT_READY);
POSIX_ENSURE(size <= (UINT64_MAX - state->currently_in_hash), S2N_ERR_INTEGER_OVERFLOW);
state->currently_in_hash += size;
if (state->alg == S2N_HASH_NONE) {
return S2N_SUCCESS;
}
POSIX_ENSURE_REF(EVP_MD_CTX_md(state->digest.high_level.evp.ctx));
POSIX_GUARD_OSSL(EVP_DigestUpdate(state->digest.high_level.evp.ctx, data, size), S2N_ERR_HASH_UPDATE_FAILED);
if (state->alg == S2N_HASH_MD5_SHA1 && s2n_use_custom_md5_sha1()) {
POSIX_ENSURE_REF(EVP_MD_CTX_md(state->digest.high_level.evp_md5_secondary.ctx));
POSIX_GUARD_OSSL(EVP_DigestUpdate(state->digest.high_level.evp_md5_secondary.ctx, data, size), S2N_ERR_HASH_UPDATE_FAILED);
}
return S2N_SUCCESS;
}
static int s2n_evp_hash_digest(struct s2n_hash_state *state, void *out, uint32_t size)
{
POSIX_ENSURE(state->is_ready_for_input, S2N_ERR_HASH_NOT_READY);
state->currently_in_hash = 0;
state->is_ready_for_input = 0;
unsigned int digest_size = size;
uint8_t expected_digest_size = 0;
POSIX_GUARD(s2n_hash_digest_size(state->alg, &expected_digest_size));
POSIX_ENSURE_EQ(digest_size, expected_digest_size);
if (state->alg == S2N_HASH_NONE) {
return S2N_SUCCESS;
}
POSIX_ENSURE_REF(EVP_MD_CTX_md(state->digest.high_level.evp.ctx));
if (state->alg == S2N_HASH_MD5_SHA1 && s2n_use_custom_md5_sha1()) {
POSIX_ENSURE_REF(EVP_MD_CTX_md(state->digest.high_level.evp_md5_secondary.ctx));
uint8_t sha1_digest_size = 0;
POSIX_GUARD(s2n_hash_digest_size(S2N_HASH_SHA1, &sha1_digest_size));
unsigned int sha1_primary_digest_size = sha1_digest_size;
unsigned int md5_secondary_digest_size = digest_size - sha1_primary_digest_size;
POSIX_ENSURE(EVP_MD_CTX_size(state->digest.high_level.evp.ctx) <= sha1_digest_size, S2N_ERR_HASH_DIGEST_FAILED);
POSIX_ENSURE(EVP_MD_CTX_size(state->digest.high_level.evp_md5_secondary.ctx) <= md5_secondary_digest_size, S2N_ERR_HASH_DIGEST_FAILED);
POSIX_GUARD_OSSL(EVP_DigestFinal_ex(state->digest.high_level.evp.ctx, ((uint8_t *) out) + MD5_DIGEST_LENGTH, &sha1_primary_digest_size), S2N_ERR_HASH_DIGEST_FAILED);
POSIX_GUARD_OSSL(EVP_DigestFinal_ex(state->digest.high_level.evp_md5_secondary.ctx, out, &md5_secondary_digest_size), S2N_ERR_HASH_DIGEST_FAILED);
return S2N_SUCCESS;
}
POSIX_ENSURE(EVP_MD_CTX_size(state->digest.high_level.evp.ctx) <= digest_size, S2N_ERR_HASH_DIGEST_FAILED);
POSIX_GUARD_OSSL(EVP_DigestFinal_ex(state->digest.high_level.evp.ctx, out, &digest_size), S2N_ERR_HASH_DIGEST_FAILED);
return S2N_SUCCESS;
}
static int s2n_evp_hash_copy(struct s2n_hash_state *to, struct s2n_hash_state *from)
{
to->hash_impl = from->hash_impl;
to->alg = from->alg;
to->is_ready_for_input = from->is_ready_for_input;
to->currently_in_hash = from->currently_in_hash;
if (from->alg == S2N_HASH_NONE) {
return S2N_SUCCESS;
}
POSIX_ENSURE_REF(to->digest.high_level.evp.ctx);
POSIX_GUARD_OSSL(EVP_MD_CTX_copy_ex(to->digest.high_level.evp.ctx, from->digest.high_level.evp.ctx), S2N_ERR_HASH_COPY_FAILED);
if (from->alg == S2N_HASH_MD5_SHA1 && s2n_use_custom_md5_sha1()) {
POSIX_ENSURE_REF(to->digest.high_level.evp_md5_secondary.ctx);
POSIX_GUARD_OSSL(EVP_MD_CTX_copy_ex(to->digest.high_level.evp_md5_secondary.ctx, from->digest.high_level.evp_md5_secondary.ctx), S2N_ERR_HASH_COPY_FAILED);
}
bool is_md5_allowed_for_fips = false;
POSIX_GUARD_RESULT(s2n_digest_is_md5_allowed_for_fips(&from->digest.high_level.evp, &is_md5_allowed_for_fips));
if (is_md5_allowed_for_fips && (from->alg == S2N_HASH_MD5 || from->alg == S2N_HASH_MD5_SHA1)) {
POSIX_GUARD(s2n_hash_allow_md5_for_fips(to));
}
return S2N_SUCCESS;
}
static int s2n_evp_hash_reset(struct s2n_hash_state *state)
{
int reset_md5_for_fips = 0;
bool is_md5_allowed_for_fips = false;
POSIX_GUARD_RESULT(s2n_digest_is_md5_allowed_for_fips(&state->digest.high_level.evp, &is_md5_allowed_for_fips));
if ((state->alg == S2N_HASH_MD5 || state->alg == S2N_HASH_MD5_SHA1) && is_md5_allowed_for_fips) {
reset_md5_for_fips = 1;
}
POSIX_GUARD_OSSL(S2N_EVP_MD_CTX_RESET(state->digest.high_level.evp.ctx), S2N_ERR_HASH_WIPE_FAILED);
if (state->alg == S2N_HASH_MD5_SHA1 && s2n_use_custom_md5_sha1()) {
POSIX_GUARD_OSSL(S2N_EVP_MD_CTX_RESET(state->digest.high_level.evp_md5_secondary.ctx), S2N_ERR_HASH_WIPE_FAILED);
}
if (reset_md5_for_fips) {
POSIX_GUARD(s2n_hash_allow_md5_for_fips(state));
}
/* hash_init resets the ready_for_input and currently_in_hash fields. */
return s2n_evp_hash_init(state, state->alg);
}
static int s2n_evp_hash_free(struct s2n_hash_state *state)
{
S2N_EVP_MD_CTX_FREE(state->digest.high_level.evp.ctx);
state->digest.high_level.evp.ctx = NULL;
if (s2n_use_custom_md5_sha1()) {
S2N_EVP_MD_CTX_FREE(state->digest.high_level.evp_md5_secondary.ctx);
state->digest.high_level.evp_md5_secondary.ctx = NULL;
}
state->is_ready_for_input = 0;
return S2N_SUCCESS;
}
static const struct s2n_hash s2n_low_level_hash = {
.alloc = &s2n_low_level_hash_new,
.allow_md5_for_fips = NULL,
.init = &s2n_low_level_hash_init,
.update = &s2n_low_level_hash_update,
.digest = &s2n_low_level_hash_digest,
.copy = &s2n_low_level_hash_copy,
.reset = &s2n_low_level_hash_reset,
.free = &s2n_low_level_hash_free,
};
static const struct s2n_hash s2n_evp_hash = {
.alloc = &s2n_evp_hash_new,
.allow_md5_for_fips = &s2n_evp_hash_allow_md5_for_fips,
.init = &s2n_evp_hash_init,
.update = &s2n_evp_hash_update,
.digest = &s2n_evp_hash_digest,
.copy = &s2n_evp_hash_copy,
.reset = &s2n_evp_hash_reset,
.free = &s2n_evp_hash_free,
};
static int s2n_hash_set_impl(struct s2n_hash_state *state)
{
state->hash_impl = &s2n_low_level_hash;
if (s2n_use_evp_impl()) {
state->hash_impl = &s2n_evp_hash;
}
return S2N_SUCCESS;
}
int s2n_hash_new(struct s2n_hash_state *state)
{
POSIX_ENSURE_REF(state);
/* Set hash_impl on initial hash creation.
* When in FIPS mode, the EVP API's must be used for hashes.
*/
POSIX_GUARD(s2n_hash_set_impl(state));
POSIX_ENSURE_REF(state->hash_impl->alloc);
POSIX_GUARD(state->hash_impl->alloc(state));
return S2N_SUCCESS;
}
S2N_RESULT s2n_hash_state_validate(struct s2n_hash_state *state)
{
RESULT_ENSURE_REF(state);
return S2N_RESULT_OK;
}
int s2n_hash_allow_md5_for_fips(struct s2n_hash_state *state)
{
POSIX_ENSURE_REF(state);
/* Ensure that hash_impl is set, as it may have been reset for s2n_hash_state on s2n_connection_wipe.
* When in FIPS mode, the EVP API's must be used for hashes.
*/
POSIX_GUARD(s2n_hash_set_impl(state));
POSIX_ENSURE_REF(state->hash_impl->allow_md5_for_fips);
return state->hash_impl->allow_md5_for_fips(state);
}
int s2n_hash_init(struct s2n_hash_state *state, s2n_hash_algorithm alg)
{
POSIX_ENSURE_REF(state);
/* Ensure that hash_impl is set, as it may have been reset for s2n_hash_state on s2n_connection_wipe.
* When in FIPS mode, the EVP API's must be used for hashes.
*/
POSIX_GUARD(s2n_hash_set_impl(state));
bool is_md5_allowed_for_fips = false;
POSIX_GUARD_RESULT(s2n_digest_is_md5_allowed_for_fips(&state->digest.high_level.evp, &is_md5_allowed_for_fips));
if (s2n_hash_is_available(alg) || ((alg == S2N_HASH_MD5 || alg == S2N_HASH_MD5_SHA1) && is_md5_allowed_for_fips)) {
/* s2n will continue to initialize an "unavailable" hash when s2n is in FIPS mode and
* FIPS is forcing the hash to be made available.
*/
POSIX_ENSURE_REF(state->hash_impl->init);
return state->hash_impl->init(state, alg);
} else {
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
}
int s2n_hash_update(struct s2n_hash_state *state, const void *data, uint32_t size)
{
POSIX_PRECONDITION(s2n_hash_state_validate(state));
POSIX_ENSURE(S2N_MEM_IS_READABLE(data, size), S2N_ERR_PRECONDITION_VIOLATION);
POSIX_ENSURE_REF(state->hash_impl->update);
return state->hash_impl->update(state, data, size);
}
int s2n_hash_digest(struct s2n_hash_state *state, void *out, uint32_t size)
{
POSIX_PRECONDITION(s2n_hash_state_validate(state));
POSIX_ENSURE(S2N_MEM_IS_READABLE(out, size), S2N_ERR_PRECONDITION_VIOLATION);
POSIX_ENSURE_REF(state->hash_impl->digest);
return state->hash_impl->digest(state, out, size);
}
int s2n_hash_copy(struct s2n_hash_state *to, struct s2n_hash_state *from)
{
POSIX_PRECONDITION(s2n_hash_state_validate(to));
POSIX_PRECONDITION(s2n_hash_state_validate(from));
POSIX_ENSURE_REF(from->hash_impl->copy);
return from->hash_impl->copy(to, from);
}
int s2n_hash_reset(struct s2n_hash_state *state)
{
POSIX_ENSURE_REF(state);
/* Ensure that hash_impl is set, as it may have been reset for s2n_hash_state on s2n_connection_wipe.
* When in FIPS mode, the EVP API's must be used for hashes.
*/
POSIX_GUARD(s2n_hash_set_impl(state));
POSIX_ENSURE_REF(state->hash_impl->reset);
return state->hash_impl->reset(state);
}
int s2n_hash_free(struct s2n_hash_state *state)
{
if (state == NULL) {
return S2N_SUCCESS;
}
/* Ensure that hash_impl is set, as it may have been reset for s2n_hash_state on s2n_connection_wipe.
* When in FIPS mode, the EVP API's must be used for hashes.
*/
POSIX_GUARD(s2n_hash_set_impl(state));
POSIX_ENSURE_REF(state->hash_impl->free);
return state->hash_impl->free(state);
}
int s2n_hash_get_currently_in_hash_total(struct s2n_hash_state *state, uint64_t *out)
{
POSIX_PRECONDITION(s2n_hash_state_validate(state));
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(out, sizeof(*out)), S2N_ERR_PRECONDITION_VIOLATION);
POSIX_ENSURE(state->is_ready_for_input, S2N_ERR_HASH_NOT_READY);
*out = state->currently_in_hash;
return S2N_SUCCESS;
}
/* Calculate, in constant time, the number of bytes currently in the hash_block */
int s2n_hash_const_time_get_currently_in_hash_block(struct s2n_hash_state *state, uint64_t *out)
{
POSIX_PRECONDITION(s2n_hash_state_validate(state));
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(out, sizeof(*out)), S2N_ERR_PRECONDITION_VIOLATION);
POSIX_ENSURE(state->is_ready_for_input, S2N_ERR_HASH_NOT_READY);
uint64_t hash_block_size;
POSIX_GUARD(s2n_hash_block_size(state->alg, &hash_block_size));
/* Requires that hash_block_size is a power of 2. This is true for all hashes we currently support
* If this ever becomes untrue, this would require fixing this*/
*out = state->currently_in_hash & (hash_block_size - 1);
return S2N_SUCCESS;
}
|