1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <sys/param.h>
#include "pq-crypto/s2n_pq.h"
#include "pq-crypto/s2n_pq_random.h"
#include "testlib/s2n_nist_kats.h"
#include "testlib/s2n_testlib.h"
#include "tls/s2n_kem.h"
#include "utils/s2n_mem.h"
#include "utils/s2n_safety.h"
/* We include s2n_drbg.c directly in order to access the static functions in our entropy callbacks. */
#include "crypto/s2n_drbg.c"
#define SEED_LENGTH 48
uint8_t kat_entropy_buff[SEED_LENGTH] = { 0 };
struct s2n_blob kat_entropy_blob = { .size = SEED_LENGTH, .data = kat_entropy_buff };
struct s2n_drbg drbg_for_pq_kats;
int s2n_pq_kat_rand_init(void)
{
POSIX_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
return S2N_SUCCESS;
}
int s2n_pq_kat_rand_cleanup(void)
{
return S2N_SUCCESS;
}
/* The seed entropy is taken from the NIST KAT file. */
int s2n_pq_kat_seed_entropy(void *ptr, uint32_t size)
{
POSIX_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
POSIX_ENSURE_REF(ptr);
POSIX_ENSURE_EQ(size, kat_entropy_blob.size);
POSIX_CHECKED_MEMCPY(ptr, kat_entropy_buff, size);
return S2N_SUCCESS;
}
/* Since the NIST KATs were generated without prediction resistance, the
* mix entropy callback should never be called. */
static int s2n_pq_kat_mix_entropy(void *ptr, uint32_t size)
{
return S2N_FAILURE;
}
/* Adapted from s2n_drbg.c::s2n_drbg_generate(); this allows us to side-step the DRBG
* prediction resistance that is built in to s2n's DRBG modes. The PQ KATs were generated
* using AES 256 CTR NO DF NO PR. */
static S2N_RESULT s2n_drbg_generate_for_pq_kat_tests(struct s2n_drbg *drbg, struct s2n_blob *blob)
{
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
uint8_t zeros_buffer[S2N_DRBG_MAX_SEED_SIZE] = { 0 };
struct s2n_blob zeros = { .data = zeros_buffer, .size = s2n_drbg_seed_size(drbg) };
RESULT_ENSURE(blob->size <= S2N_DRBG_GENERATE_LIMIT, S2N_ERR_DRBG_REQUEST_SIZE);
/* We do NOT mix in additional entropy */
RESULT_GUARD(s2n_drbg_bits(drbg, blob));
RESULT_GUARD(s2n_drbg_update(drbg, &zeros));
return S2N_RESULT_OK;
}
/* Adapted from s2n_random.c::s2n_get_private_random_data(). */
static S2N_RESULT s2n_get_random_data_for_pq_kat_tests(struct s2n_blob *blob)
{
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
uint32_t offset = 0;
uint32_t remaining = blob->size;
while (remaining) {
struct s2n_blob slice = { 0 };
RESULT_GUARD_POSIX(s2n_blob_slice(blob, &slice, offset, MIN(remaining, S2N_DRBG_GENERATE_LIMIT)));
RESULT_GUARD(s2n_drbg_generate_for_pq_kat_tests(&drbg_for_pq_kats, &slice));
remaining -= slice.size;
offset += slice.size;
}
return S2N_RESULT_OK;
}
S2N_RESULT s2n_get_random_bytes_for_pq_kat_tests(uint8_t *buffer, uint32_t num_bytes)
{
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
struct s2n_blob out = { .data = buffer, .size = num_bytes };
RESULT_GUARD(s2n_get_random_data_for_pq_kat_tests(&out));
return S2N_RESULT_OK;
}
static int s2n_test_kem_with_kat(const struct s2n_kem *kem, const char *kat_file_name)
{
POSIX_ENSURE(s2n_pq_is_enabled(), S2N_ERR_PQ_DISABLED);
POSIX_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
POSIX_ENSURE_REF(kem);
FILE *kat_file = fopen(kat_file_name, "r");
POSIX_ENSURE_REF(kat_file);
uint8_t *ct, *client_shared_secret, *pk, *sk, *server_shared_secret, *pk_answer, *sk_answer, *ct_answer, *ss_answer;
/* Client side variables */
POSIX_ENSURE_REF(ct = malloc(kem->ciphertext_length));
POSIX_ENSURE_REF(client_shared_secret = malloc(kem->shared_secret_key_length));
/* Server side variables */
POSIX_ENSURE_REF(pk = malloc(kem->public_key_length));
POSIX_ENSURE_REF(sk = malloc(kem->private_key_length));
POSIX_ENSURE_REF(server_shared_secret = malloc(kem->shared_secret_key_length));
/* Known answer variables */
POSIX_ENSURE_REF(pk_answer = malloc(kem->public_key_length));
POSIX_ENSURE_REF(sk_answer = malloc(kem->private_key_length));
POSIX_ENSURE_REF(ct_answer = malloc(kem->ciphertext_length));
POSIX_ENSURE_REF(ss_answer = malloc(kem->shared_secret_key_length));
s2n_stack_blob(personalization_string, SEED_LENGTH, SEED_LENGTH);
POSIX_GUARD(s2n_rand_set_callbacks(s2n_pq_kat_rand_init, s2n_pq_kat_rand_cleanup, s2n_pq_kat_seed_entropy,
s2n_pq_kat_mix_entropy));
POSIX_GUARD_RESULT(s2n_set_rand_bytes_callback_for_testing(s2n_get_random_bytes_for_pq_kat_tests));
for (size_t i = 0; i < NUM_OF_KATS; i++) {
/* Verify test index */
int32_t count = 0;
POSIX_GUARD(FindMarker(kat_file, "count = "));
POSIX_ENSURE_GT(fscanf(kat_file, "%d", &count), 0);
POSIX_ENSURE_EQ(count, i);
/* Set the DRBG to the state that was used to generate this test vector. We instantiate the DRBG
* as S2N_AES_256_CTR_NO_DF_PR; since the NIST KATs were generated without prediction resistance,
* we use the custom function s2n_drbg_generate_for_pq_kat_tests() defined above to turn off the
* prediction resistance. */
POSIX_GUARD(ReadHex(kat_file, kat_entropy_blob.data, SEED_LENGTH, "seed = "));
POSIX_GUARD_RESULT(s2n_drbg_instantiate(&drbg_for_pq_kats, &personalization_string, S2N_AES_256_CTR_NO_DF_PR));
/* Generate the public/private key pair */
POSIX_GUARD(kem->generate_keypair(pk, sk));
/* Create a shared secret and use the public key to encrypt it */
POSIX_GUARD(kem->encapsulate(ct, client_shared_secret, pk));
/* Use the private key to decrypt the ct to get the shared secret */
POSIX_GUARD(kem->decapsulate(server_shared_secret, ct, sk));
/* Read the KAT values */
POSIX_GUARD(ReadHex(kat_file, pk_answer, kem->public_key_length, "pk = "));
POSIX_GUARD(ReadHex(kat_file, sk_answer, kem->private_key_length, "sk = "));
POSIX_GUARD(ReadHex(kat_file, ct_answer, kem->ciphertext_length, "ct = "));
POSIX_GUARD(ReadHex(kat_file, ss_answer, kem->shared_secret_key_length, "ss = "));
/* Test the client and server got the same value */
POSIX_ENSURE_EQ(memcmp(client_shared_secret, server_shared_secret, kem->shared_secret_key_length), 0);
/* Compare the KAT values */
POSIX_ENSURE_EQ(memcmp(pk_answer, pk, kem->public_key_length), 0);
POSIX_ENSURE_EQ(memcmp(sk_answer, sk, kem->private_key_length), 0);
POSIX_ENSURE_EQ(memcmp(ct_answer, ct, kem->ciphertext_length), 0);
POSIX_ENSURE_EQ(memcmp(ss_answer, server_shared_secret, kem->shared_secret_key_length), 0);
/* Wipe the DRBG; it will reseed for each KAT test vector. */
POSIX_GUARD_RESULT(s2n_drbg_wipe(&drbg_for_pq_kats));
}
fclose(kat_file);
free(ct);
free(client_shared_secret);
free(pk);
free(sk);
free(server_shared_secret);
free(pk_answer);
free(sk_answer);
free(ct_answer);
free(ss_answer);
return 0;
}
S2N_RESULT s2n_pq_kem_kat_test(const struct s2n_kem_kat_test_vector *test_vectors, size_t count)
{
RESULT_ENSURE_GT(count, 0);
for (size_t i = 0; i < count; i++) {
const struct s2n_kem_kat_test_vector vector = test_vectors[i];
const struct s2n_kem *kem = vector.kem;
/* Test the C code */
RESULT_GUARD(vector.disable_asm());
RESULT_GUARD_POSIX(s2n_test_kem_with_kat(kem, vector.kat_file));
/* Test the assembly, if available */
RESULT_GUARD(vector.enable_asm());
if (vector.asm_is_enabled()) {
RESULT_GUARD_POSIX(s2n_test_kem_with_kat(kem, vector.kat_file));
}
}
return S2N_RESULT_OK;
}
S2N_RESULT s2n_pq_noop_asm()
{
return S2N_RESULT_OK;
}
bool s2n_pq_no_asm_available()
{
return false;
}
|