1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_evp_signing.h"
#include "crypto/s2n_ecdsa.h"
#include "crypto/s2n_fips.h"
#include "crypto/s2n_rsa_pss.h"
#include "crypto/s2n_rsa_signing.h"
#include "s2n_test.h"
#include "testlib/s2n_testlib.h"
/* The ecdsa sign/verify methods are static */
#include "crypto/s2n_ecdsa.c"
#include "crypto/s2n_rsa.c"
#define INPUT_DATA_SIZE 100
#define OUTPUT_DATA_SIZE 1000
#define EXPECT_PKEY_USES_EVP_SIGNING(pkey) \
EXPECT_EQUAL(pkey->sign, &s2n_evp_sign); \
EXPECT_EQUAL(pkey->verify, &s2n_evp_verify)
const uint8_t input_data[INPUT_DATA_SIZE] = "hello hash";
static bool s2n_hash_alg_is_supported(s2n_signature_algorithm sig_alg, s2n_hash_algorithm hash_alg)
{
return (hash_alg != S2N_HASH_NONE) && (hash_alg != S2N_HASH_MD5)
&& (hash_alg != S2N_HASH_MD5_SHA1 || sig_alg == S2N_SIGNATURE_RSA);
}
static S2N_RESULT s2n_test_hash_init(struct s2n_hash_state *hash_state, s2n_hash_algorithm hash_alg)
{
RESULT_GUARD_POSIX(s2n_hash_init(hash_state, hash_alg));
RESULT_GUARD_POSIX(s2n_hash_allow_md5_for_fips(hash_state));
RESULT_GUARD_POSIX(s2n_hash_update(hash_state, input_data, s2n_array_len(input_data)));
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_setup_public_key(struct s2n_pkey *public_key, struct s2n_cert_chain_and_key *chain)
{
s2n_pkey_type pkey_type = S2N_PKEY_TYPE_UNKNOWN;
EXPECT_SUCCESS(s2n_asn1der_to_public_key_and_type(public_key, &pkey_type,
&chain->cert_chain->head->raw));
EXPECT_EQUAL(pkey_type, chain->cert_chain->head->pkey_type);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_test_evp_sign(s2n_signature_algorithm sig_alg, s2n_hash_algorithm hash_alg,
struct s2n_pkey *private_key, struct s2n_blob *evp_signature_out)
{
DEFER_CLEANUP(struct s2n_hash_state hash_state = { 0 }, s2n_hash_free);
RESULT_GUARD_POSIX(s2n_hash_new(&hash_state));
RESULT_GUARD(s2n_test_hash_init(&hash_state, hash_alg));
RESULT_GUARD_POSIX(s2n_evp_sign(private_key, sig_alg, &hash_state, evp_signature_out));
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_test_evp_verify(s2n_signature_algorithm sig_alg, s2n_hash_algorithm hash_alg,
struct s2n_pkey *public_key,
struct s2n_blob *evp_signature, struct s2n_blob *expected_signature)
{
DEFER_CLEANUP(struct s2n_hash_state hash_state = { 0 }, s2n_hash_free);
RESULT_GUARD_POSIX(s2n_hash_new(&hash_state));
/* Verify that the EVP methods can verify their own signature */
RESULT_GUARD(s2n_test_hash_init(&hash_state, hash_alg));
RESULT_GUARD_POSIX(s2n_evp_verify(public_key, sig_alg, &hash_state, evp_signature));
/* Verify that using the pkey directly can verify own signature */
RESULT_GUARD(s2n_test_hash_init(&hash_state, hash_alg));
RESULT_GUARD_POSIX(s2n_pkey_verify(public_key, sig_alg, &hash_state, evp_signature));
/* Verify that the EVP methods can verify the known good signature */
RESULT_GUARD(s2n_test_hash_init(&hash_state, hash_alg));
RESULT_GUARD_POSIX(s2n_evp_verify(public_key, sig_alg, &hash_state, expected_signature));
return S2N_RESULT_OK;
}
int main(int argc, char **argv)
{
BEGIN_TEST();
/* Sanity check that we're enabling evp signing properly.
* awslc-fips is known to require evp signing.
*/
if (s2n_is_in_fips_mode() && s2n_libcrypto_is_awslc()) {
EXPECT_TRUE(s2n_evp_signing_supported());
}
if (!s2n_evp_signing_supported()) {
END_TEST();
}
DEFER_CLEANUP(struct s2n_hash_state hash_state = { 0 }, s2n_hash_free);
EXPECT_SUCCESS(s2n_hash_new(&hash_state));
struct s2n_cert_chain_and_key *rsa_cert_chain = NULL;
EXPECT_SUCCESS(s2n_test_cert_chain_and_key_new(&rsa_cert_chain,
S2N_RSA_2048_PKCS1_CERT_CHAIN, S2N_RSA_2048_PKCS1_KEY));
/* Test that unsupported hash algs are treated as invalid.
* Later tests will ignore unsupported algs, so ensure they are actually invalid. */
{
/* This pkey should never actually be needed -- any pkey will do */
struct s2n_pkey *pkey = rsa_cert_chain->private_key;
for (s2n_signature_algorithm sig_alg = 0; sig_alg <= UINT8_MAX; sig_alg++) {
for (s2n_hash_algorithm hash_alg = 0; hash_alg < S2N_HASH_SENTINEL; hash_alg++) {
if (s2n_hash_alg_is_supported(sig_alg, hash_alg)) {
continue;
}
s2n_stack_blob(evp_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_ERROR_WITH_ERRNO(s2n_test_evp_sign(sig_alg, hash_alg, pkey, &evp_signature),
S2N_ERR_HASH_INVALID_ALGORITHM);
EXPECT_ERROR_WITH_ERRNO(s2n_test_evp_verify(sig_alg, hash_alg, pkey, &evp_signature, &evp_signature),
S2N_ERR_HASH_INVALID_ALGORITHM);
}
}
};
/* EVP signing must match RSA signing */
{
s2n_signature_algorithm sig_alg = S2N_SIGNATURE_RSA;
DEFER_CLEANUP(struct s2n_pkey public_key_parsed = { 0 }, s2n_pkey_free);
EXPECT_OK(s2n_setup_public_key(&public_key_parsed, rsa_cert_chain));
struct s2n_pkey *private_key = rsa_cert_chain->private_key;
struct s2n_pkey *public_key = &public_key_parsed;
EXPECT_PKEY_USES_EVP_SIGNING(private_key);
EXPECT_PKEY_USES_EVP_SIGNING(public_key);
for (s2n_hash_algorithm hash_alg = 0; hash_alg < S2N_HASH_SENTINEL; hash_alg++) {
if (!s2n_hash_alg_is_supported(sig_alg, hash_alg)) {
continue;
}
/* Calculate the signature using EVP methods */
s2n_stack_blob(evp_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_evp_sign(sig_alg, hash_alg, private_key, &evp_signature));
/* Calculate the signature using RSA methods */
s2n_stack_blob(rsa_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_rsa_pkcs1v15_sign(private_key, &hash_state, &rsa_signature));
/* Verify that the EVP methods can verify both signatures */
EXPECT_OK(s2n_test_evp_verify(sig_alg, hash_alg, public_key, &evp_signature, &rsa_signature));
/* Verify that the RSA methods can verify the EVP signature */
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_rsa_pkcs1v15_verify(public_key, &hash_state, &evp_signature));
}
};
/* EVP signing must match ECDSA signing */
{
s2n_signature_algorithm sig_alg = S2N_SIGNATURE_ECDSA;
struct s2n_cert_chain_and_key *ecdsa_cert_chain = NULL;
EXPECT_SUCCESS(s2n_test_cert_chain_and_key_new(&ecdsa_cert_chain,
S2N_ECDSA_P384_PKCS1_CERT_CHAIN, S2N_ECDSA_P384_PKCS1_KEY));
DEFER_CLEANUP(struct s2n_pkey public_key_parsed = { 0 }, s2n_pkey_free);
EXPECT_OK(s2n_setup_public_key(&public_key_parsed, ecdsa_cert_chain));
struct s2n_pkey *private_key = ecdsa_cert_chain->private_key;
struct s2n_pkey *public_key = &public_key_parsed;
EXPECT_PKEY_USES_EVP_SIGNING(private_key);
EXPECT_PKEY_USES_EVP_SIGNING(public_key);
for (s2n_hash_algorithm hash_alg = 0; hash_alg < S2N_HASH_SENTINEL; hash_alg++) {
if (!s2n_hash_alg_is_supported(sig_alg, hash_alg)) {
continue;
}
/* Calculate the signature using EVP methods */
s2n_stack_blob(evp_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_evp_sign(sig_alg, hash_alg, private_key, &evp_signature));
/* Calculate the signature using ECDSA methods */
s2n_stack_blob(ecdsa_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_ecdsa_sign(private_key, sig_alg, &hash_state, &ecdsa_signature));
/* Verify that the EVP methods can verify both signatures */
EXPECT_OK(s2n_test_evp_verify(sig_alg, hash_alg, public_key, &evp_signature, &ecdsa_signature));
/* Verify that the ECDSA methods can verify the EVP signature */
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_ecdsa_verify(public_key, sig_alg, &hash_state, &evp_signature));
}
EXPECT_SUCCESS(s2n_cert_chain_and_key_free(ecdsa_cert_chain));
};
/* EVP signing must match RSA-PSS-RSAE signing */
if (s2n_is_rsa_pss_signing_supported()) {
s2n_signature_algorithm sig_alg = S2N_SIGNATURE_RSA_PSS_RSAE;
DEFER_CLEANUP(struct s2n_pkey public_key_parsed = { 0 }, s2n_pkey_free);
EXPECT_OK(s2n_setup_public_key(&public_key_parsed, rsa_cert_chain));
struct s2n_pkey *private_key = rsa_cert_chain->private_key;
struct s2n_pkey *public_key = &public_key_parsed;
EXPECT_PKEY_USES_EVP_SIGNING(private_key);
EXPECT_PKEY_USES_EVP_SIGNING(public_key);
for (s2n_hash_algorithm hash_alg = 0; hash_alg < S2N_HASH_SENTINEL; hash_alg++) {
if (!s2n_hash_alg_is_supported(sig_alg, hash_alg)) {
continue;
}
/* Calculate the signature using EVP methods */
s2n_stack_blob(evp_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_evp_sign(sig_alg, hash_alg, private_key, &evp_signature));
/* Calculate the signature using RSA-PSS methods */
s2n_stack_blob(rsa_pss_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_rsa_pss_sign(private_key, &hash_state, &rsa_pss_signature));
/* Verify that the EVP methods can verify both signatures */
EXPECT_OK(s2n_test_evp_verify(sig_alg, hash_alg, public_key, &evp_signature, &rsa_pss_signature));
/* Verify that the RSA-PSS methods can verify the EVP signature */
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_rsa_pss_verify(public_key, &hash_state, &evp_signature));
}
}
/* EVP signing must match RSA-PSS-PSS signing */
if (s2n_is_rsa_pss_certs_supported()) {
s2n_signature_algorithm sig_alg = S2N_SIGNATURE_RSA_PSS_PSS;
struct s2n_cert_chain_and_key *rsa_pss_cert_chain = NULL;
EXPECT_SUCCESS(s2n_test_cert_chain_and_key_new(&rsa_pss_cert_chain,
S2N_RSA_PSS_2048_SHA256_LEAF_CERT, S2N_RSA_PSS_2048_SHA256_LEAF_KEY));
DEFER_CLEANUP(struct s2n_pkey public_key_parsed = { 0 }, s2n_pkey_free);
EXPECT_OK(s2n_setup_public_key(&public_key_parsed, rsa_pss_cert_chain));
struct s2n_pkey *private_key = rsa_pss_cert_chain->private_key;
struct s2n_pkey *public_key = &public_key_parsed;
EXPECT_PKEY_USES_EVP_SIGNING(private_key);
EXPECT_PKEY_USES_EVP_SIGNING(public_key);
for (s2n_hash_algorithm hash_alg = 0; hash_alg < S2N_HASH_SENTINEL; hash_alg++) {
if (!s2n_hash_alg_is_supported(sig_alg, hash_alg)) {
continue;
}
/* Calculate the signature using EVP methods */
s2n_stack_blob(evp_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_evp_sign(sig_alg, hash_alg, private_key, &evp_signature));
/* Calculate the signature using RSA-PSS methods */
s2n_stack_blob(rsa_pss_signature, OUTPUT_DATA_SIZE, OUTPUT_DATA_SIZE);
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_rsa_pss_sign(private_key, &hash_state, &rsa_pss_signature));
/* Verify that the EVP methods can verify both signatures */
EXPECT_OK(s2n_test_evp_verify(sig_alg, hash_alg, public_key, &evp_signature, &rsa_pss_signature));
/* Verify that the RSA-PSS methods can verify the EVP signature */
EXPECT_OK(s2n_test_hash_init(&hash_state, hash_alg));
EXPECT_SUCCESS(s2n_rsa_pss_verify(public_key, &hash_state, &evp_signature));
}
EXPECT_SUCCESS(s2n_cert_chain_and_key_free(rsa_pss_cert_chain));
}
EXPECT_SUCCESS(s2n_cert_chain_and_key_free(rsa_cert_chain));
END_TEST();
}
|