1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#if defined(S2N_CPUID_AVAILABLE)
#include <cpuid.h>
#endif
#include "api/s2n.h"
#include "crypto/s2n_drbg.h"
#include "error/s2n_errno.h"
#include "stuffer/s2n_stuffer.h"
#include "utils/s2n_fork_detection.h"
#include "utils/s2n_mem.h"
#include "utils/s2n_random.h"
#include "utils/s2n_result.h"
#include "utils/s2n_safety.h"
#define ENTROPY_SOURCE "/dev/urandom"
/* See https://en.wikipedia.org/wiki/CPUID */
#define RDRAND_ECX_FLAG 0x40000000
/* One second in nanoseconds */
#define ONE_S INT64_C(1000000000)
/* Placeholder value for an uninitialized entropy file descriptor */
#define UNINITIALIZED_ENTROPY_FD -1
static int entropy_fd = UNINITIALIZED_ENTROPY_FD;
struct s2n_rand_state {
uint64_t cached_fork_generation_number;
struct s2n_drbg public_drbg;
struct s2n_drbg private_drbg;
bool drbgs_initialized;
};
static __thread struct s2n_rand_state s2n_per_thread_rand_state = {
.cached_fork_generation_number = 0,
.public_drbg = { 0 },
.private_drbg = { 0 },
.drbgs_initialized = false
};
static int s2n_rand_init_impl(void);
static int s2n_rand_cleanup_impl(void);
static int s2n_rand_urandom_impl(void *ptr, uint32_t size);
static int s2n_rand_rdrand_impl(void *ptr, uint32_t size);
static s2n_rand_init_callback s2n_rand_init_cb = s2n_rand_init_impl;
static s2n_rand_cleanup_callback s2n_rand_cleanup_cb = s2n_rand_cleanup_impl;
static s2n_rand_seed_callback s2n_rand_seed_cb = s2n_rand_urandom_impl;
static s2n_rand_mix_callback s2n_rand_mix_cb = s2n_rand_urandom_impl;
/* non-static for SAW proof */
bool s2n_cpu_supports_rdrand()
{
#if defined(S2N_CPUID_AVAILABLE)
uint32_t eax, ebx, ecx, edx;
if (!__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
return false;
}
if (ecx & RDRAND_ECX_FLAG) {
return true;
}
#endif
return false;
}
int s2n_rand_set_callbacks(s2n_rand_init_callback rand_init_callback,
s2n_rand_cleanup_callback rand_cleanup_callback,
s2n_rand_seed_callback rand_seed_callback,
s2n_rand_mix_callback rand_mix_callback)
{
POSIX_ENSURE_REF(rand_init_callback);
POSIX_ENSURE_REF(rand_cleanup_callback);
POSIX_ENSURE_REF(rand_seed_callback);
POSIX_ENSURE_REF(rand_mix_callback);
s2n_rand_init_cb = rand_init_callback;
s2n_rand_cleanup_cb = rand_cleanup_callback;
s2n_rand_seed_cb = rand_seed_callback;
s2n_rand_mix_cb = rand_mix_callback;
return S2N_SUCCESS;
}
S2N_RESULT s2n_get_seed_entropy(struct s2n_blob *blob)
{
RESULT_ENSURE_REF(blob);
RESULT_ENSURE(s2n_rand_seed_cb(blob->data, blob->size) >= S2N_SUCCESS, S2N_ERR_CANCELLED);
return S2N_RESULT_OK;
}
S2N_RESULT s2n_get_mix_entropy(struct s2n_blob *blob)
{
RESULT_ENSURE_REF(blob);
RESULT_GUARD_POSIX(s2n_rand_mix_cb(blob->data, blob->size));
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_init_drbgs(void)
{
uint8_t s2n_public_drbg[] = "s2n public drbg";
uint8_t s2n_private_drbg[] = "s2n private drbg";
struct s2n_blob public = { .data = s2n_public_drbg, .size = sizeof(s2n_public_drbg) };
struct s2n_blob private = { .data = s2n_private_drbg, .size = sizeof(s2n_private_drbg) };
RESULT_GUARD(s2n_drbg_instantiate(&s2n_per_thread_rand_state.public_drbg, &public, S2N_AES_128_CTR_NO_DF_PR));
RESULT_GUARD(s2n_drbg_instantiate(&s2n_per_thread_rand_state.private_drbg, &private, S2N_AES_256_CTR_NO_DF_PR));
s2n_per_thread_rand_state.drbgs_initialized = true;
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_ensure_initialized_drbgs(void)
{
if (s2n_per_thread_rand_state.drbgs_initialized == false) {
RESULT_GUARD(s2n_init_drbgs());
/* Then cache the fork generation number. We just initialized the drbg
* states with new entropy and forking is not an external event.
*/
uint64_t returned_fork_generation_number = 0;
RESULT_GUARD(s2n_get_fork_generation_number(&returned_fork_generation_number));
s2n_per_thread_rand_state.cached_fork_generation_number = returned_fork_generation_number;
}
return S2N_RESULT_OK;
}
/* s2n_ensure_uniqueness() implements defenses against uniqueness
* breaking events that might cause duplicated drbg states. Currently, only
* implements fork detection.
*/
static S2N_RESULT s2n_ensure_uniqueness(void)
{
uint64_t returned_fork_generation_number = 0;
RESULT_GUARD(s2n_get_fork_generation_number(&returned_fork_generation_number));
if (returned_fork_generation_number != s2n_per_thread_rand_state.cached_fork_generation_number) {
/* This assumes that s2n_rand_cleanup_thread() doesn't mutate any other
* state than the drbg states and it resets the drbg initialization
* boolean to false. s2n_ensure_initialized_drbgs() will cache the new
* fork generation number in the per thread state.
*/
RESULT_GUARD(s2n_rand_cleanup_thread());
RESULT_GUARD(s2n_ensure_initialized_drbgs());
}
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_get_random_data(struct s2n_blob *out_blob,
struct s2n_drbg *drbg_state)
{
RESULT_GUARD(s2n_ensure_initialized_drbgs());
RESULT_GUARD(s2n_ensure_uniqueness());
uint32_t offset = 0;
uint32_t remaining = out_blob->size;
while (remaining) {
struct s2n_blob slice = { 0 };
RESULT_GUARD_POSIX(s2n_blob_slice(out_blob, &slice, offset, MIN(remaining, S2N_DRBG_GENERATE_LIMIT)));
RESULT_GUARD(s2n_drbg_generate(drbg_state, &slice));
remaining -= slice.size;
offset += slice.size;
}
return S2N_RESULT_OK;
}
S2N_RESULT s2n_get_public_random_data(struct s2n_blob *blob)
{
RESULT_GUARD(s2n_get_random_data(blob, &s2n_per_thread_rand_state.public_drbg));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_get_private_random_data(struct s2n_blob *blob)
{
RESULT_GUARD(s2n_get_random_data(blob, &s2n_per_thread_rand_state.private_drbg));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_get_public_random_bytes_used(uint64_t *bytes_used)
{
RESULT_GUARD(s2n_drbg_bytes_used(&s2n_per_thread_rand_state.public_drbg, bytes_used));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_get_private_random_bytes_used(uint64_t *bytes_used)
{
RESULT_GUARD(s2n_drbg_bytes_used(&s2n_per_thread_rand_state.private_drbg, bytes_used));
return S2N_RESULT_OK;
}
static int s2n_rand_urandom_impl(void *ptr, uint32_t size)
{
POSIX_ENSURE(entropy_fd != UNINITIALIZED_ENTROPY_FD, S2N_ERR_NOT_INITIALIZED);
uint8_t *data = ptr;
uint32_t n = size;
struct timespec sleep_time = { .tv_sec = 0, .tv_nsec = 0 };
long backoff = 1;
while (n) {
errno = 0;
int r = read(entropy_fd, data, n);
if (r <= 0) {
/*
* A non-blocking read() on /dev/urandom should "never" fail,
* except for EINTR. If it does, briefly pause and use
* exponential backoff to avoid creating a tight spinning loop.
*
* iteration delay
* --------- -----------------
* 1 10 nsec
* 2 100 nsec
* 3 1,000 nsec
* 4 10,000 nsec
* 5 100,000 nsec
* 6 1,000,000 nsec
* 7 10,000,000 nsec
* 8 99,999,999 nsec
* 9 99,999,999 nsec
* ...
*/
if (errno != EINTR) {
backoff = MIN(backoff * 10, ONE_S - 1);
sleep_time.tv_nsec = backoff;
do {
r = nanosleep(&sleep_time, &sleep_time);
} while (r != 0);
}
continue;
}
data += r;
n -= r;
}
return S2N_SUCCESS;
}
/*
* Return a random number in the range [0, bound)
*/
S2N_RESULT s2n_public_random(int64_t bound, uint64_t *output)
{
uint64_t r;
RESULT_ENSURE_GT(bound, 0);
while (1) {
struct s2n_blob blob = { .data = (void *) &r, sizeof(r) };
RESULT_GUARD(s2n_get_public_random_data(&blob));
/* Imagine an int was one byte and UINT_MAX was 256. If the
* caller asked for s2n_random(129, ...) we'd end up in
* trouble. Each number in the range 0...127 would be twice
* as likely as 128. That's because r == 0 % 129 -> 0, and
* r == 129 % 129 -> 0, but only r == 128 returns 128,
* r == 257 is out of range.
*
* To de-bias the dice, we discard values of r that are higher
* that the highest multiple of 'bound' an int can support. If
* bound is a uint, then in the worst case we discard 50% - 1 r's.
* But since 'bound' is an int and INT_MAX is <= UINT_MAX / 2,
* in the worst case we discard 25% - 1 r's.
*/
if (r < (UINT64_MAX - (UINT64_MAX % bound))) {
*output = r % bound;
return S2N_RESULT_OK;
}
}
}
#if S2N_LIBCRYPTO_SUPPORTS_CUSTOM_RAND
#define S2N_RAND_ENGINE_ID "s2n_rand"
int s2n_openssl_compat_rand(unsigned char *buf, int num)
{
struct s2n_blob out = { .data = buf, .size = num };
if (s2n_result_is_error(s2n_get_private_random_data(&out))) {
return 0;
}
return 1;
}
int s2n_openssl_compat_status(void)
{
return 1;
}
int s2n_openssl_compat_init(ENGINE *unused)
{
return 1;
}
RAND_METHOD s2n_openssl_rand_method = {
.seed = NULL,
.bytes = s2n_openssl_compat_rand,
.cleanup = NULL,
.add = NULL,
.pseudorand = s2n_openssl_compat_rand,
.status = s2n_openssl_compat_status
};
#endif
static int s2n_rand_init_impl(void)
{
OPEN:
entropy_fd = open(ENTROPY_SOURCE, O_RDONLY);
if (entropy_fd == -1) {
if (errno == EINTR) {
goto OPEN;
}
POSIX_BAIL(S2N_ERR_OPEN_RANDOM);
}
if (s2n_cpu_supports_rdrand()) {
s2n_rand_mix_cb = s2n_rand_rdrand_impl;
}
return S2N_SUCCESS;
}
S2N_RESULT s2n_rand_init(void)
{
RESULT_ENSURE(s2n_rand_init_cb() >= S2N_SUCCESS, S2N_ERR_CANCELLED);
RESULT_GUARD(s2n_ensure_initialized_drbgs());
#if S2N_LIBCRYPTO_SUPPORTS_CUSTOM_RAND
/* Create an engine */
ENGINE *e = ENGINE_new();
RESULT_ENSURE(e != NULL, S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_set_id(e, S2N_RAND_ENGINE_ID), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_set_name(e, "s2n entropy generator"), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_set_flags(e, ENGINE_FLAGS_NO_REGISTER_ALL), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_set_init_function(e, s2n_openssl_compat_init), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_set_RAND(e, &s2n_openssl_rand_method), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_add(e), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_free(e), S2N_ERR_OPEN_RANDOM);
/* Use that engine for rand() */
e = ENGINE_by_id(S2N_RAND_ENGINE_ID);
RESULT_ENSURE(e != NULL, S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_init(e), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_set_default(e, ENGINE_METHOD_RAND), S2N_ERR_OPEN_RANDOM);
RESULT_GUARD_OSSL(ENGINE_free(e), S2N_ERR_OPEN_RANDOM);
#endif
return S2N_RESULT_OK;
}
static int s2n_rand_cleanup_impl(void)
{
POSIX_ENSURE(entropy_fd != UNINITIALIZED_ENTROPY_FD, S2N_ERR_NOT_INITIALIZED);
POSIX_GUARD(close(entropy_fd));
entropy_fd = UNINITIALIZED_ENTROPY_FD;
return S2N_SUCCESS;
}
S2N_RESULT s2n_rand_cleanup(void)
{
RESULT_ENSURE(s2n_rand_cleanup_cb() >= S2N_SUCCESS, S2N_ERR_CANCELLED);
#if S2N_LIBCRYPTO_SUPPORTS_CUSTOM_RAND
/* Cleanup our rand ENGINE in libcrypto */
ENGINE *rand_engine = ENGINE_by_id(S2N_RAND_ENGINE_ID);
if (rand_engine) {
ENGINE_remove(rand_engine);
ENGINE_finish(rand_engine);
ENGINE_free(rand_engine);
ENGINE_cleanup();
RAND_set_rand_engine(NULL);
RAND_set_rand_method(NULL);
}
#endif
s2n_rand_init_cb = s2n_rand_init_impl;
s2n_rand_cleanup_cb = s2n_rand_cleanup_impl;
s2n_rand_seed_cb = s2n_rand_urandom_impl;
s2n_rand_mix_cb = s2n_rand_urandom_impl;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_rand_cleanup_thread(void)
{
/* Currently, it is only safe for this function to mutate the drbg states
* in the per thread rand state. See s2n_ensure_uniqueness().
*/
RESULT_GUARD(s2n_drbg_wipe(&s2n_per_thread_rand_state.private_drbg));
RESULT_GUARD(s2n_drbg_wipe(&s2n_per_thread_rand_state.public_drbg));
s2n_per_thread_rand_state.drbgs_initialized = false;
return S2N_RESULT_OK;
}
/* This must only be used for unit tests. Any real use is dangerous and will be
* overwritten in s2n_ensure_uniqueness() if it is forked. This was added to
* support known answer tests that use OpenSSL and s2n_get_private_random_data
* directly.
*/
S2N_RESULT s2n_set_private_drbg_for_test(struct s2n_drbg drbg)
{
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
RESULT_GUARD(s2n_drbg_wipe(&s2n_per_thread_rand_state.private_drbg));
s2n_per_thread_rand_state.private_drbg = drbg;
return S2N_RESULT_OK;
}
/*
* volatile is important to prevent the compiler from
* re-ordering or optimizing the use of RDRAND.
*/
static int s2n_rand_rdrand_impl(void *data, uint32_t size)
{
#if defined(__x86_64__) || defined(__i386__)
struct s2n_blob out = { .data = data, .size = size };
int space_remaining = 0;
struct s2n_stuffer stuffer = { 0 };
union {
uint64_t u64;
#if defined(__i386__)
struct {
/* since we check first that we're on intel, we can safely assume little endian. */
uint32_t u_low;
uint32_t u_high;
} i386_fields;
#endif /* defined(__i386__) */
uint8_t u8[8];
} output;
POSIX_GUARD(s2n_stuffer_init(&stuffer, &out));
while ((space_remaining = s2n_stuffer_space_remaining(&stuffer))) {
unsigned char success = 0;
output.u64 = 0;
for (int tries = 0; tries < 10; tries++) {
#if defined(__i386__)
/* execute the rdrand instruction, store the result in a general purpose register (it's assigned to
* output.i386_fields.u_low). Check the carry bit, which will be set on success. Then clober the register and reset
* the carry bit. Due to needing to support an ancient assembler we use the opcode syntax.
* the %b1 is to force compilers to use c1 instead of ecx.
* Here's a description of how the opcode is encoded:
* 0x0fc7 (rdrand)
* 0xf0 (store the result in eax).
*/
unsigned char success_high = 0, success_low = 0;
__asm__ __volatile__(
".byte 0x0f, 0xc7, 0xf0;\n"
"setc %b1;\n"
: "=a"(output.i386_fields.u_low), "=qm"(success_low)
:
: "cc");
__asm__ __volatile__(
".byte 0x0f, 0xc7, 0xf0;\n"
"setc %b1;\n"
: "=a"(output.i386_fields.u_high), "=qm"(success_high)
:
: "cc");
/* cppcheck-suppress knownConditionTrueFalse */
success = success_high & success_low;
/* Treat either all 1 or all 0 bits in either the high or low order
* bits as failure */
if (output.i386_fields.u_low == 0 || output.i386_fields.u_low == UINT32_MAX
|| output.i386_fields.u_high == 0 || output.i386_fields.u_high == UINT32_MAX) {
success = 0;
}
#else
/* execute the rdrand instruction, store the result in a general purpose register (it's assigned to
* output.u64). Check the carry bit, which will be set on success. Then clober the carry bit.
* Due to needing to support an ancient assembler we use the opcode syntax.
* the %b1 is to force compilers to use c1 instead of ecx.
* Here's a description of how the opcode is encoded:
* 0x48 (pick a 64-bit register it does more too, but that's all that matters there)
* 0x0fc7 (rdrand)
* 0xf0 (store the result in rax). */
__asm__ __volatile__(
".byte 0x48, 0x0f, 0xc7, 0xf0;\n"
"setc %b1;\n"
: "=a"(output.u64), "=qm"(success)
:
: "cc");
#endif /* defined(__i386__) */
/* Some AMD CPUs will find that RDRAND "sticks" on all 1s but still reports success.
* Some other very old CPUs use all 0s as an error condition while still reporting success.
* If we encounter either of these suspicious values (a 1/2^63 chance) we'll treat them as
* a failure and generate a new value.
*
* In the future we could add CPUID checks to detect processors with these known bugs,
* however it does not appear worth it. The entropy loss is negligible and the
* corresponding likelihood that a healthy CPU generates either of these values is also
* negligible (1/2^63). Finally, adding processor specific logic would greatly
* increase the complexity and would cause us to "miss" any unknown processors with
* similar bugs. */
if (output.u64 == UINT64_MAX || output.u64 == 0) {
success = 0;
}
if (success) {
break;
}
}
POSIX_ENSURE(success, S2N_ERR_RDRAND_FAILED);
int data_to_fill = MIN(sizeof(output), space_remaining);
POSIX_GUARD(s2n_stuffer_write_bytes(&stuffer, output.u8, data_to_fill));
}
return S2N_SUCCESS;
#else
POSIX_BAIL(S2N_ERR_UNSUPPORTED_CPU);
#endif
}
|