1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/auth/private/key_derivation.h>
#include <aws/auth/credentials.h>
#include <aws/cal/ecc.h>
#include <aws/cal/hash.h>
#include <aws/cal/hmac.h>
#include <aws/common/byte_buf.h>
#include <aws/common/string.h>
/*
* The maximum number of iterations we will attempt to derive a valid ecc key for. The probability that this counter
* value ever gets reached is vanishingly low -- with reasonable uniformity/independence assumptions, it's
* approximately
*
* 2 ^ (-32 * 254)
*/
#define MAX_KEY_DERIVATION_COUNTER_VALUE 254
/*
* The encoding (32-bit, big-endian) of the prefix to the FixedInputString when fed to the hmac function, per
* the sigv4a key derivation specification.
*/
AWS_STATIC_STRING_FROM_LITERAL(s_1_as_four_bytes_be, "\x00\x00\x00\x01");
/*
* The encoding (32-bit, big-endian) of the "Length" component of the sigv4a key derivation specification
*/
AWS_STATIC_STRING_FROM_LITERAL(s_256_as_four_bytes_be, "\x00\x00\x01\x00");
AWS_STRING_FROM_LITERAL(g_signature_type_sigv4a_http_request, "AWS4-ECDSA-P256-SHA256");
AWS_STATIC_STRING_FROM_LITERAL(s_secret_buffer_prefix, "AWS4A");
/*
* This constructs the fixed input byte sequence of the Sigv4a key derivation specification. It also includes the
* value (0x01 as a 32-bit big endian value) that is pre-pended to the fixed input before invoking the hmac to
* generate the candidate key value.
*
* The final output looks like
*
* 0x00000001 || "AWS4-ECDSA-P256-SHA256" || 0x00 || AccessKeyId || CounterValue as uint8_t || 0x00000100 (Length)
*
* From this, we can determine the necessary buffer capacity when setting up the fixed input buffer:
*
* 4 + 22 + 1 + len(AccessKeyId) + 1 + 4 = 32 + len(AccessKeyId)
*/
static int s_aws_build_fixed_input_buffer(
struct aws_byte_buf *fixed_input,
const struct aws_credentials *credentials,
const uint8_t counter) {
if (counter == 0 || counter > MAX_KEY_DERIVATION_COUNTER_VALUE) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
if (!aws_byte_buf_is_valid(fixed_input)) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
aws_byte_buf_reset(fixed_input, false);
/*
* A placeholder value that's not actually part of the fixed input string in the spec, but is always this value
* and is always the first byte of the hmac-ed string.
*/
struct aws_byte_cursor one_cursor = aws_byte_cursor_from_string(s_1_as_four_bytes_be);
if (aws_byte_buf_append_dynamic(fixed_input, &one_cursor)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor sigv4a_algorithm_cursor = aws_byte_cursor_from_string(g_signature_type_sigv4a_http_request);
if (aws_byte_buf_append(fixed_input, &sigv4a_algorithm_cursor)) {
return AWS_OP_ERR;
}
if (aws_byte_buf_append_byte_dynamic(fixed_input, 0)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor access_key_cursor = aws_credentials_get_access_key_id(credentials);
if (aws_byte_buf_append(fixed_input, &access_key_cursor)) {
return AWS_OP_ERR;
}
if (aws_byte_buf_append_byte_dynamic(fixed_input, counter)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor encoded_bit_length_cursor = aws_byte_cursor_from_string(s_256_as_four_bytes_be);
if (aws_byte_buf_append_dynamic(fixed_input, &encoded_bit_length_cursor)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
/*
* aws_be_bytes_compare_constant_time() and aws_be_bytes_add_one_constant_time() are constant-time arithmetic functions
* that operate on raw bytes as if they were unbounded integers in a big-endian base 255 format.
*/
/*
* In the following function gt and eq are updated together. After each update, the variables will be
* in one of the following states:
*
* (1) gt is 0, eq is 1, and from an ordering perspective, lhs == rhs, as checked "so far"
* (2) gt is 1, eq is 0, (lhs > rhs)
* (3) gt is 0, eq is 0, (lhs < rhs)
*
* States (2) and (3) are terminal states that cannot be exited since eq is 0 and is the and-wise mask of all
* subsequent gt updates. Similarly, once eq is zero it cannot ever become non-zero.
*
* Intuitively these ideas match the standard way of comparing magnitude equality by considering digit count and
* digits from most significant to least significant.
*
* Let l and r be the the two digits that we are
* comparing between lhs and rhs. Assume 0 <= l, r <= 255 seated in 32-bit integers
*
* gt is maintained by the following bit trick:
*
* l > r <=>
* (r - l) < 0 <=>
* (r - l) as an int32 has the high bit set <=>
* ((r - l) >> 31) & 0x01 == 1
*
* eq is maintained by the following bit trick:
*
* l == r <=>
* l ^ r == 0 <=>
* (l ^ r) - 1 == -1 <=>
* (((l ^ r) - 1) >> 31) & 0x01 == 1
*
* We apply to the volatile type modifier to attempt to prevent all early-out optimizations that a compiler might
* apply if it performed constraint-based reasoning on the logic. This is based on treating volatile
* semantically as "this value can change underneath you at any time so you always have to re-read it and cannot
* reason statically about program behavior when it reaches a certain value (like 0)"
*/
/**
* Compares two large unsigned integers in a raw byte format.
* The two operands *must* be the same size (simplifies the problem significantly).
*
* The output parameter comparison_result is set to:
* -1 if lhs_raw_be_bigint < rhs_raw_be_bigint
* 0 if lhs_raw_be_bigint == rhs_raw_be_bigint
* 1 if lhs_raw_be_bigint > rhs_raw_be_bigint
*/
int aws_be_bytes_compare_constant_time(
const struct aws_byte_buf *lhs_raw_be_bigint,
const struct aws_byte_buf *rhs_raw_be_bigint,
int *comparison_result) {
AWS_FATAL_PRECONDITION(aws_byte_buf_is_valid(lhs_raw_be_bigint));
AWS_FATAL_PRECONDITION(aws_byte_buf_is_valid(rhs_raw_be_bigint));
/*
* We only need to support comparing byte sequences of the same length here
*/
const size_t lhs_len = lhs_raw_be_bigint->len;
if (lhs_len != rhs_raw_be_bigint->len) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
volatile uint8_t gt = 0;
volatile uint8_t eq = 1;
const uint8_t *lhs_raw_bytes = lhs_raw_be_bigint->buffer;
const uint8_t *rhs_raw_bytes = rhs_raw_be_bigint->buffer;
for (size_t i = 0; i < lhs_len; ++i) {
volatile int32_t lhs_digit = (int32_t)lhs_raw_bytes[i];
volatile int32_t rhs_digit = (int32_t)rhs_raw_bytes[i];
/*
* For each digit, check for a state (1) => (2) ie lhs > rhs, or (1) => (3) ie lhs < rhs transition
* based on comparing the two digits in constant time using the ideas explained in the giant comment
* block above this function.
*/
gt |= ((rhs_digit - lhs_digit) >> 31) & eq;
eq &= (((lhs_digit ^ rhs_digit) - 1) >> 31) & 0x01;
}
*comparison_result = gt + gt + eq - 1;
return AWS_OP_SUCCESS;
}
/**
* Adds one to a large unsigned integer represented by a sequence of bytes.
*
* A maximal value will roll over to zero. This does not affect the correctness of the users
* of this function.
*/
void aws_be_bytes_add_one_constant_time(struct aws_byte_buf *raw_be_bigint) {
AWS_FATAL_PRECONDITION(aws_byte_buf_is_valid(raw_be_bigint));
const size_t byte_count = raw_be_bigint->len;
volatile uint32_t carry = 1;
uint8_t *raw_bytes = raw_be_bigint->buffer;
for (size_t i = 0; i < byte_count; ++i) {
const size_t index = byte_count - i - 1;
volatile uint32_t current_digit = raw_bytes[index];
current_digit += carry;
carry = (current_digit >> 8) & 0x01;
raw_bytes[index] = (uint8_t)(current_digit & 0xFF);
}
}
/* clang-format off */
/* In the spec, this is N-2 */
static uint8_t s_n_minus_2[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x4F,
};
/* clang-format on */
enum aws_key_derivation_result {
AKDR_SUCCESS,
AKDR_NEXT_COUNTER,
AKDR_FAILURE,
};
static enum aws_key_derivation_result s_aws_derive_ecc_private_key(
struct aws_byte_buf *private_key_value,
const struct aws_byte_buf *k0) {
AWS_FATAL_ASSERT(k0->len == aws_ecc_key_coordinate_byte_size_from_curve_name(AWS_CAL_ECDSA_P256));
aws_byte_buf_reset(private_key_value, false);
struct aws_byte_buf s_n_minus_2_buf = {
.allocator = NULL,
.buffer = s_n_minus_2,
.capacity = AWS_ARRAY_SIZE(s_n_minus_2),
.len = AWS_ARRAY_SIZE(s_n_minus_2),
};
int comparison_result = 0;
if (aws_be_bytes_compare_constant_time(k0, &s_n_minus_2_buf, &comparison_result)) {
return AKDR_FAILURE;
}
if (comparison_result > 0) {
return AKDR_NEXT_COUNTER;
}
struct aws_byte_cursor k0_cursor = aws_byte_cursor_from_buf(k0);
if (aws_byte_buf_append(private_key_value, &k0_cursor)) {
return AKDR_FAILURE;
}
aws_be_bytes_add_one_constant_time(private_key_value);
return AKDR_SUCCESS;
}
static int s_init_secret_buf(
struct aws_byte_buf *secret_buf,
struct aws_allocator *allocator,
const struct aws_credentials *credentials) {
struct aws_byte_cursor secret_access_key_cursor = aws_credentials_get_secret_access_key(credentials);
size_t secret_buffer_length = secret_access_key_cursor.len + s_secret_buffer_prefix->len;
if (aws_byte_buf_init(secret_buf, allocator, secret_buffer_length)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor prefix_cursor = aws_byte_cursor_from_string(s_secret_buffer_prefix);
if (aws_byte_buf_append(secret_buf, &prefix_cursor)) {
return AWS_OP_ERR;
}
if (aws_byte_buf_append(secret_buf, &secret_access_key_cursor)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
struct aws_ecc_key_pair *aws_ecc_key_pair_new_ecdsa_p256_key_from_aws_credentials(
struct aws_allocator *allocator,
const struct aws_credentials *credentials) {
if (allocator == NULL || credentials == NULL) {
aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
return NULL;
}
struct aws_ecc_key_pair *ecc_key_pair = NULL;
struct aws_byte_buf fixed_input;
AWS_ZERO_STRUCT(fixed_input);
struct aws_byte_buf fixed_input_hmac_digest;
AWS_ZERO_STRUCT(fixed_input_hmac_digest);
struct aws_byte_buf private_key_buf;
AWS_ZERO_STRUCT(private_key_buf);
struct aws_byte_buf secret_buf;
AWS_ZERO_STRUCT(secret_buf);
size_t access_key_length = aws_credentials_get_access_key_id(credentials).len;
/*
* This value is calculated based on the format of the fixed input string as described above at
* the definition of s_aws_build_fixed_input_buffer()
*/
size_t required_fixed_input_capacity = 32 + access_key_length;
if (aws_byte_buf_init(&fixed_input, allocator, required_fixed_input_capacity)) {
goto done;
}
if (aws_byte_buf_init(&fixed_input_hmac_digest, allocator, AWS_SHA256_LEN)) {
goto done;
}
size_t key_length = aws_ecc_key_coordinate_byte_size_from_curve_name(AWS_CAL_ECDSA_P256);
AWS_FATAL_ASSERT(key_length == AWS_SHA256_LEN);
if (aws_byte_buf_init(&private_key_buf, allocator, key_length)) {
goto done;
}
if (s_init_secret_buf(&secret_buf, allocator, credentials)) {
goto done;
}
struct aws_byte_cursor secret_cursor = aws_byte_cursor_from_buf(&secret_buf);
uint8_t counter = 1;
enum aws_key_derivation_result result = AKDR_NEXT_COUNTER;
while ((result == AKDR_NEXT_COUNTER) && (counter <= MAX_KEY_DERIVATION_COUNTER_VALUE)) {
if (s_aws_build_fixed_input_buffer(&fixed_input, credentials, counter++)) {
break;
}
aws_byte_buf_reset(&fixed_input_hmac_digest, true);
struct aws_byte_cursor fixed_input_cursor = aws_byte_cursor_from_buf(&fixed_input);
if (aws_sha256_hmac_compute(allocator, &secret_cursor, &fixed_input_cursor, &fixed_input_hmac_digest, 0)) {
break;
}
result = s_aws_derive_ecc_private_key(&private_key_buf, &fixed_input_hmac_digest);
}
if (result == AKDR_SUCCESS) {
struct aws_byte_cursor private_key_cursor = aws_byte_cursor_from_buf(&private_key_buf);
ecc_key_pair = aws_ecc_key_pair_new_from_private_key(allocator, AWS_CAL_ECDSA_P256, &private_key_cursor);
}
done:
aws_byte_buf_clean_up_secure(&secret_buf);
aws_byte_buf_clean_up_secure(&private_key_buf);
aws_byte_buf_clean_up_secure(&fixed_input_hmac_digest);
aws_byte_buf_clean_up(&fixed_input);
return ecc_key_pair;
}
|