1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/cal/private/symmetric_cipher_priv.h>
#define OPENSSL_SUPPRESS_DEPRECATED
#include <openssl/evp.h>
struct openssl_aes_cipher {
struct aws_symmetric_cipher cipher_base;
EVP_CIPHER_CTX *encryptor_ctx;
EVP_CIPHER_CTX *decryptor_ctx;
struct aws_byte_buf working_buffer;
};
static int s_encrypt(struct aws_symmetric_cipher *cipher, struct aws_byte_cursor input, struct aws_byte_buf *out) {
size_t required_buffer_space = input.len + cipher->block_size;
if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
size_t available_write_space = out->capacity - out->len;
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
int len_written = (int)(available_write_space);
if (!EVP_EncryptUpdate(
openssl_cipher->encryptor_ctx, out->buffer + out->len, &len_written, input.ptr, (int)input.len)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
out->len += len_written;
return AWS_OP_SUCCESS;
}
static int s_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
size_t required_buffer_space = cipher->block_size;
if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
int len_written = (int)(out->capacity - out->len);
if (!EVP_EncryptFinal_ex(openssl_cipher->encryptor_ctx, out->buffer + out->len, &len_written)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
out->len += len_written;
return AWS_OP_SUCCESS;
}
static int s_decrypt(struct aws_symmetric_cipher *cipher, struct aws_byte_cursor input, struct aws_byte_buf *out) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
size_t required_buffer_space = input.len + cipher->block_size;
if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
size_t available_write_space = out->capacity - out->len;
int len_written = (int)available_write_space;
if (!EVP_DecryptUpdate(
openssl_cipher->decryptor_ctx, out->buffer + out->len, &len_written, input.ptr, (int)input.len)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
out->len += len_written;
return AWS_OP_SUCCESS;
}
static int s_finalize_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
size_t required_buffer_space = cipher->block_size;
if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
int len_written = (int)out->capacity - out->len;
if (!EVP_DecryptFinal_ex(openssl_cipher->decryptor_ctx, out->buffer + out->len, &len_written)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
out->len += len_written;
return AWS_OP_SUCCESS;
}
static void s_destroy(struct aws_symmetric_cipher *cipher) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (openssl_cipher->encryptor_ctx) {
EVP_CIPHER_CTX_free(openssl_cipher->encryptor_ctx);
}
if (openssl_cipher->decryptor_ctx) {
EVP_CIPHER_CTX_free(openssl_cipher->decryptor_ctx);
}
aws_byte_buf_clean_up_secure(&cipher->key);
aws_byte_buf_clean_up_secure(&cipher->iv);
if (cipher->tag.buffer) {
aws_byte_buf_clean_up_secure(&cipher->tag);
}
if (cipher->aad.buffer) {
aws_byte_buf_clean_up_secure(&cipher->aad);
}
aws_byte_buf_clean_up_secure(&openssl_cipher->working_buffer);
aws_mem_release(cipher->allocator, openssl_cipher);
}
static int s_clear_reusable_state(struct aws_symmetric_cipher *cipher) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
EVP_CIPHER_CTX_cleanup(openssl_cipher->encryptor_ctx);
EVP_CIPHER_CTX_cleanup(openssl_cipher->decryptor_ctx);
aws_byte_buf_secure_zero(&openssl_cipher->working_buffer);
cipher->good = true;
return AWS_OP_SUCCESS;
}
static int s_init_cbc_cipher_materials(struct aws_symmetric_cipher *cipher) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (!EVP_EncryptInit_ex(
openssl_cipher->encryptor_ctx,
EVP_aes_256_cbc(),
NULL,
openssl_cipher->cipher_base.key.buffer,
openssl_cipher->cipher_base.iv.buffer) ||
!EVP_DecryptInit_ex(
openssl_cipher->decryptor_ctx,
EVP_aes_256_cbc(),
NULL,
openssl_cipher->cipher_base.key.buffer,
openssl_cipher->cipher_base.iv.buffer)) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
return AWS_OP_SUCCESS;
}
static int s_reset_cbc_cipher_materials(struct aws_symmetric_cipher *cipher) {
int ret_val = s_clear_reusable_state(cipher);
if (ret_val == AWS_OP_SUCCESS) {
return s_init_cbc_cipher_materials(cipher);
}
return ret_val;
}
static struct aws_symmetric_cipher_vtable s_cbc_vtable = {
.alg_name = "AES-CBC 256",
.provider = "OpenSSL Compatible LibCrypto",
.destroy = s_destroy,
.reset = s_reset_cbc_cipher_materials,
.decrypt = s_decrypt,
.encrypt = s_encrypt,
.finalize_decryption = s_finalize_decryption,
.finalize_encryption = s_finalize_encryption,
};
struct aws_symmetric_cipher *aws_aes_cbc_256_new_impl(
struct aws_allocator *allocator,
const struct aws_byte_cursor *key,
const struct aws_byte_cursor *iv) {
struct openssl_aes_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct openssl_aes_cipher));
cipher->cipher_base.allocator = allocator;
cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
cipher->cipher_base.vtable = &s_cbc_vtable;
cipher->cipher_base.impl = cipher;
if (key) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.key, allocator, *key);
} else {
aws_byte_buf_init(&cipher->cipher_base.key, allocator, AWS_AES_256_KEY_BYTE_LEN);
aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cipher->cipher_base.key);
}
if (iv) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.iv, allocator, *iv);
} else {
aws_byte_buf_init(&cipher->cipher_base.iv, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
aws_symmetric_cipher_generate_initialization_vector(
AWS_AES_256_CIPHER_BLOCK_SIZE, false, &cipher->cipher_base.iv);
}
/* EVP_CIPHER_CTX_init() will be called inside EVP_CIPHER_CTX_new(). */
cipher->encryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->encryptor_ctx && "Cipher initialization failed!");
/* EVP_CIPHER_CTX_init() will be called inside EVP_CIPHER_CTX_new(). */
cipher->decryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->decryptor_ctx && "Cipher initialization failed!");
if (s_init_cbc_cipher_materials(&cipher->cipher_base) != AWS_OP_SUCCESS) {
goto error;
}
cipher->cipher_base.good = true;
return &cipher->cipher_base;
error:
s_destroy(&cipher->cipher_base);
return NULL;
}
static int s_init_ctr_cipher_materials(struct aws_symmetric_cipher *cipher) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (!(EVP_EncryptInit_ex(
openssl_cipher->encryptor_ctx,
EVP_aes_256_ctr(),
NULL,
openssl_cipher->cipher_base.key.buffer,
openssl_cipher->cipher_base.iv.buffer) &&
EVP_CIPHER_CTX_set_padding(openssl_cipher->encryptor_ctx, 0)) ||
!(EVP_DecryptInit_ex(
openssl_cipher->decryptor_ctx,
EVP_aes_256_ctr(),
NULL,
openssl_cipher->cipher_base.key.buffer,
openssl_cipher->cipher_base.iv.buffer) &&
EVP_CIPHER_CTX_set_padding(openssl_cipher->decryptor_ctx, 0))) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
return AWS_OP_SUCCESS;
}
static int s_reset_ctr_cipher_materials(struct aws_symmetric_cipher *cipher) {
int ret_val = s_clear_reusable_state(cipher);
if (ret_val == AWS_OP_SUCCESS) {
return s_init_ctr_cipher_materials(cipher);
}
return ret_val;
}
static struct aws_symmetric_cipher_vtable s_ctr_vtable = {
.alg_name = "AES-CTR 256",
.provider = "OpenSSL Compatible LibCrypto",
.destroy = s_destroy,
.reset = s_reset_ctr_cipher_materials,
.decrypt = s_decrypt,
.encrypt = s_encrypt,
.finalize_decryption = s_finalize_decryption,
.finalize_encryption = s_finalize_encryption,
};
struct aws_symmetric_cipher *aws_aes_ctr_256_new_impl(
struct aws_allocator *allocator,
const struct aws_byte_cursor *key,
const struct aws_byte_cursor *iv) {
struct openssl_aes_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct openssl_aes_cipher));
cipher->cipher_base.allocator = allocator;
cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
cipher->cipher_base.vtable = &s_ctr_vtable;
cipher->cipher_base.impl = cipher;
if (key) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.key, allocator, *key);
} else {
aws_byte_buf_init(&cipher->cipher_base.key, allocator, AWS_AES_256_KEY_BYTE_LEN);
aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cipher->cipher_base.key);
}
if (iv) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.iv, allocator, *iv);
} else {
aws_byte_buf_init(&cipher->cipher_base.iv, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
aws_symmetric_cipher_generate_initialization_vector(
AWS_AES_256_CIPHER_BLOCK_SIZE, true, &cipher->cipher_base.iv);
}
/* EVP_CIPHER_CTX_init() will be called inside EVP_CIPHER_CTX_new(). */
cipher->encryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->encryptor_ctx && "Cipher initialization failed!");
/* EVP_CIPHER_CTX_init() will be called inside EVP_CIPHER_CTX_new(). */
cipher->decryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->decryptor_ctx && "Cipher initialization failed!");
if (s_init_ctr_cipher_materials(&cipher->cipher_base) != AWS_OP_SUCCESS) {
goto error;
}
cipher->cipher_base.good = true;
return &cipher->cipher_base;
error:
s_destroy(&cipher->cipher_base);
return NULL;
}
static int s_finalize_gcm_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
int ret_val = s_finalize_encryption(cipher, out);
if (ret_val == AWS_OP_SUCCESS) {
if (!cipher->tag.len) {
if (!EVP_CIPHER_CTX_ctrl(
openssl_cipher->encryptor_ctx,
EVP_CTRL_GCM_GET_TAG,
(int)cipher->tag.capacity,
cipher->tag.buffer)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
cipher->tag.len = AWS_AES_256_CIPHER_BLOCK_SIZE;
}
}
return ret_val;
}
static int s_init_gcm_cipher_materials(struct aws_symmetric_cipher *cipher) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (!(EVP_EncryptInit_ex(openssl_cipher->encryptor_ctx, EVP_aes_256_gcm(), NULL, NULL, NULL) &&
EVP_EncryptInit_ex(
openssl_cipher->encryptor_ctx,
NULL,
NULL,
openssl_cipher->cipher_base.key.buffer,
openssl_cipher->cipher_base.iv.buffer) &&
EVP_CIPHER_CTX_set_padding(openssl_cipher->encryptor_ctx, 0)) ||
!(EVP_DecryptInit_ex(openssl_cipher->decryptor_ctx, EVP_aes_256_gcm(), NULL, NULL, NULL) &&
EVP_DecryptInit_ex(
openssl_cipher->decryptor_ctx,
NULL,
NULL,
openssl_cipher->cipher_base.key.buffer,
openssl_cipher->cipher_base.iv.buffer) &&
EVP_CIPHER_CTX_set_padding(openssl_cipher->decryptor_ctx, 0))) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
if (openssl_cipher->cipher_base.aad.len) {
int outLen = 0;
if (!EVP_EncryptUpdate(
openssl_cipher->encryptor_ctx,
NULL,
&outLen,
openssl_cipher->cipher_base.aad.buffer,
(int)openssl_cipher->cipher_base.aad.len) ||
!EVP_DecryptUpdate(
openssl_cipher->decryptor_ctx,
NULL,
&outLen,
openssl_cipher->cipher_base.aad.buffer,
(int)openssl_cipher->cipher_base.aad.len)) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
}
if (openssl_cipher->cipher_base.tag.len) {
if (!EVP_CIPHER_CTX_ctrl(
openssl_cipher->decryptor_ctx,
EVP_CTRL_GCM_SET_TAG,
(int)openssl_cipher->cipher_base.tag.len,
openssl_cipher->cipher_base.tag.buffer)) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
}
return AWS_OP_SUCCESS;
}
static int s_reset_gcm_cipher_materials(struct aws_symmetric_cipher *cipher) {
int ret_val = s_clear_reusable_state(cipher);
if (ret_val == AWS_OP_SUCCESS) {
return s_init_gcm_cipher_materials(cipher);
}
return ret_val;
}
static struct aws_symmetric_cipher_vtable s_gcm_vtable = {
.alg_name = "AES-GCM 256",
.provider = "OpenSSL Compatible LibCrypto",
.destroy = s_destroy,
.reset = s_reset_gcm_cipher_materials,
.decrypt = s_decrypt,
.encrypt = s_encrypt,
.finalize_decryption = s_finalize_decryption,
.finalize_encryption = s_finalize_gcm_encryption,
};
struct aws_symmetric_cipher *aws_aes_gcm_256_new_impl(
struct aws_allocator *allocator,
const struct aws_byte_cursor *key,
const struct aws_byte_cursor *iv,
const struct aws_byte_cursor *aad,
const struct aws_byte_cursor *decryption_tag) {
struct openssl_aes_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct openssl_aes_cipher));
cipher->cipher_base.allocator = allocator;
cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
cipher->cipher_base.vtable = &s_gcm_vtable;
cipher->cipher_base.impl = cipher;
/* Copy key into the cipher context. */
if (key) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.key, allocator, *key);
} else {
aws_byte_buf_init(&cipher->cipher_base.key, allocator, AWS_AES_256_KEY_BYTE_LEN);
aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cipher->cipher_base.key);
}
/* Copy initialization vector into the cipher context. */
if (iv) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.iv, allocator, *iv);
} else {
aws_byte_buf_init(&cipher->cipher_base.iv, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE - 4);
aws_symmetric_cipher_generate_initialization_vector(
AWS_AES_256_CIPHER_BLOCK_SIZE - 4, false, &cipher->cipher_base.iv);
}
/* Initialize the cipher contexts. */
cipher->encryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->encryptor_ctx && "Encryptor cipher initialization failed!");
cipher->decryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->decryptor_ctx && "Decryptor cipher initialization failed!");
/* Set AAD if provided */
if (aad) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.aad, allocator, *aad);
}
/* Set tag for the decryptor to use.*/
if (decryption_tag) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.tag, allocator, *decryption_tag);
} else {
/* we'll need this later when we grab the tag during encryption time. */
aws_byte_buf_init(&cipher->cipher_base.tag, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
}
/* Initialize the cipher contexts with the specified key and IV. */
if (s_init_gcm_cipher_materials(&cipher->cipher_base)) {
goto error;
}
cipher->cipher_base.good = true;
return &cipher->cipher_base;
error:
s_destroy(&cipher->cipher_base);
return NULL;
}
static int s_key_wrap_encrypt_decrypt(
struct aws_symmetric_cipher *cipher,
struct aws_byte_cursor input,
struct aws_byte_buf *out) {
(void)out;
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
return aws_byte_buf_append_dynamic(&openssl_cipher->working_buffer, &input);
}
static const size_t MIN_CEK_LENGTH_BYTES = 128 / 8;
static const unsigned char INTEGRITY_VALUE = 0xA6;
#define KEYWRAP_BLOCK_SIZE 8u
static int s_key_wrap_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (openssl_cipher->working_buffer.len < MIN_CEK_LENGTH_BYTES) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
/* the following is an in place implementation of
RFC 3394 using the alternate in-place implementation.
we use one in-place buffer instead of the copy at the end.
the one letter variable names are meant to directly reflect the variables in the RFC */
size_t required_buffer_space = openssl_cipher->working_buffer.len + cipher->block_size;
size_t starting_len_offset = out->len;
if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
/* put the integrity check register in the first 8 bytes of the final buffer. */
aws_byte_buf_write_u8_n(out, INTEGRITY_VALUE, KEYWRAP_BLOCK_SIZE);
uint8_t *a = out->buffer + starting_len_offset;
struct aws_byte_cursor working_buf_cur = aws_byte_cursor_from_buf(&openssl_cipher->working_buffer);
aws_byte_buf_write_from_whole_cursor(out, working_buf_cur);
/* put the register buffer after the integrity check register */
uint8_t *r = out->buffer + starting_len_offset + KEYWRAP_BLOCK_SIZE;
int n = (int)(openssl_cipher->working_buffer.len / KEYWRAP_BLOCK_SIZE);
uint8_t b_buf[KEYWRAP_BLOCK_SIZE * 2] = {0};
struct aws_byte_buf b = aws_byte_buf_from_empty_array(b_buf, sizeof(b_buf));
int b_out_len = b.capacity;
uint8_t temp_buf[KEYWRAP_BLOCK_SIZE * 2] = {0};
struct aws_byte_buf temp_input = aws_byte_buf_from_empty_array(temp_buf, sizeof(temp_buf));
for (int j = 0; j <= 5; ++j) {
for (int i = 1; i <= n; ++i) {
/* concat A and R[i], A should be most significant and then R[i] should be least significant. */
memcpy(temp_input.buffer, a, KEYWRAP_BLOCK_SIZE);
memcpy(temp_input.buffer + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE);
/* encrypt the concatenated A and R[I] and store it in B */
if (!EVP_EncryptUpdate(
openssl_cipher->encryptor_ctx, b.buffer, &b_out_len, temp_input.buffer, (int)temp_input.capacity)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
unsigned char t = (unsigned char)((n * j) + i);
/* put the 64 MSB ^ T into A */
memcpy(a, b.buffer, KEYWRAP_BLOCK_SIZE);
a[7] ^= t;
/* put the 64 LSB into R[i] */
memcpy(r, b.buffer + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE);
/* increment i -> R[i] */
r += KEYWRAP_BLOCK_SIZE;
}
/* reset R */
r = out->buffer + starting_len_offset + KEYWRAP_BLOCK_SIZE;
}
return AWS_OP_SUCCESS;
}
static int s_key_wrap_finalize_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (openssl_cipher->working_buffer.len < MIN_CEK_LENGTH_BYTES + KEYWRAP_BLOCK_SIZE) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
/* the following is an in place implementation of
RFC 3394 using the alternate in-place implementation.
we use one in-place buffer instead of the copy at the end.
the one letter variable names are meant to directly reflect the variables in the RFC */
size_t required_buffer_space = openssl_cipher->working_buffer.len - KEYWRAP_BLOCK_SIZE;
size_t starting_len_offset = out->len;
if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
memcpy(
out->buffer + starting_len_offset,
openssl_cipher->working_buffer.buffer + KEYWRAP_BLOCK_SIZE,
required_buffer_space);
/* integrity register should be the first 8 bytes of the final buffer. */
uint8_t *a = openssl_cipher->working_buffer.buffer;
/* in-place register is the plaintext. For decryption, start at the last array position (8 bytes before the end); */
uint8_t *r = out->buffer + starting_len_offset + required_buffer_space - KEYWRAP_BLOCK_SIZE;
int n = (int)(required_buffer_space / KEYWRAP_BLOCK_SIZE);
uint8_t b_buf[KEYWRAP_BLOCK_SIZE * 10] = {0};
struct aws_byte_buf b = aws_byte_buf_from_empty_array(b_buf, sizeof(b_buf));
int b_out_len = b.capacity;
uint8_t temp_buf[KEYWRAP_BLOCK_SIZE * 2] = {0};
struct aws_byte_buf temp_input = aws_byte_buf_from_empty_array(temp_buf, sizeof(temp_buf));
for (int j = 5; j >= 0; --j) {
for (int i = n; i >= 1; --i) {
/* concat A and T */
memcpy(temp_input.buffer, a, KEYWRAP_BLOCK_SIZE);
unsigned char t = (unsigned char)((n * j) + i);
temp_input.buffer[7] ^= t;
/* R[i] */
memcpy(temp_input.buffer + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE);
/* Decrypt the concatenated buffer */
if (!EVP_DecryptUpdate(
openssl_cipher->decryptor_ctx, b.buffer, &b_out_len, temp_input.buffer, (int)temp_input.capacity)) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
/* set A to 64 MSB of decrypted result */
memcpy(a, b.buffer, KEYWRAP_BLOCK_SIZE);
/* set the R[i] to the 64 LSB of decrypted result */
memcpy(r, b.buffer + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE);
/* decrement i -> R[i] */
r -= KEYWRAP_BLOCK_SIZE;
}
/* reset R */
r = out->buffer + starting_len_offset + required_buffer_space - KEYWRAP_BLOCK_SIZE;
}
/* here we perform the integrity check to make sure A == 0xA6A6A6A6A6A6A6A6 */
for (size_t i = 0; i < KEYWRAP_BLOCK_SIZE; ++i) {
if (a[i] != INTEGRITY_VALUE) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_CAL_SIGNATURE_VALIDATION_FAILED);
}
}
out->len += required_buffer_space;
return AWS_OP_SUCCESS;
}
static int s_init_keywrap_cipher_materials(struct aws_symmetric_cipher *cipher) {
struct openssl_aes_cipher *openssl_cipher = cipher->impl;
if (!(EVP_EncryptInit_ex(openssl_cipher->encryptor_ctx, EVP_aes_256_ecb(), NULL, cipher->key.buffer, NULL) &&
EVP_CIPHER_CTX_set_padding(openssl_cipher->encryptor_ctx, 0)) ||
!(EVP_DecryptInit_ex(openssl_cipher->decryptor_ctx, EVP_aes_256_ecb(), NULL, cipher->key.buffer, NULL) &&
EVP_CIPHER_CTX_set_padding(openssl_cipher->decryptor_ctx, 0))) {
cipher->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
return AWS_OP_SUCCESS;
}
static int s_reset_keywrap_cipher_materials(struct aws_symmetric_cipher *cipher) {
int ret_val = s_clear_reusable_state(cipher);
if (ret_val == AWS_OP_SUCCESS) {
return s_init_keywrap_cipher_materials(cipher);
}
return ret_val;
}
static struct aws_symmetric_cipher_vtable s_keywrap_vtable = {
.alg_name = "AES-KEYWRAP 256",
.provider = "OpenSSL Compatible LibCrypto",
.destroy = s_destroy,
.reset = s_reset_keywrap_cipher_materials,
.decrypt = s_key_wrap_encrypt_decrypt,
.encrypt = s_key_wrap_encrypt_decrypt,
.finalize_decryption = s_key_wrap_finalize_decryption,
.finalize_encryption = s_key_wrap_finalize_encryption,
};
struct aws_symmetric_cipher *aws_aes_keywrap_256_new_impl(
struct aws_allocator *allocator,
const struct aws_byte_cursor *key) {
struct openssl_aes_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct openssl_aes_cipher));
cipher->cipher_base.allocator = allocator;
cipher->cipher_base.block_size = KEYWRAP_BLOCK_SIZE;
cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
cipher->cipher_base.vtable = &s_keywrap_vtable;
cipher->cipher_base.impl = cipher;
/* Copy key into the cipher context. */
if (key) {
aws_byte_buf_init_copy_from_cursor(&cipher->cipher_base.key, allocator, *key);
} else {
aws_byte_buf_init(&cipher->cipher_base.key, allocator, AWS_AES_256_KEY_BYTE_LEN);
aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cipher->cipher_base.key);
}
aws_byte_buf_init(&cipher->working_buffer, allocator, KEYWRAP_BLOCK_SIZE);
/* Initialize the cipher contexts. */
cipher->encryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->encryptor_ctx && "Encryptor cipher initialization failed!");
cipher->decryptor_ctx = EVP_CIPHER_CTX_new();
AWS_FATAL_ASSERT(cipher->decryptor_ctx && "Decryptor cipher initialization failed!");
/* Initialize the cipher contexts with the specified key and IV. */
if (s_init_keywrap_cipher_materials(&cipher->cipher_base)) {
goto error;
}
cipher->cipher_base.good = true;
return &cipher->cipher_base;
error:
s_destroy(&cipher->cipher_base);
return NULL;
}
|