1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/cal/private/opensslcrypto_common.h>
#include <aws/cal/private/rsa.h>
#include <aws/cal/cal.h>
#include <aws/common/encoding.h>
#define OPENSSL_SUPPRESS_DEPRECATED
#include <openssl/err.h>
#include <openssl/evp.h>
#if defined(OPENSSL_IS_OPENSSL)
/*Error defines were part of evp.h in 1.0.x and were moved to evperr.h in 1.1.0*/
# if OPENSSL_VERSION_NUMBER >= 0x10100000L
# include <openssl/evperr.h>
# endif
#else
# include <openssl/evp_errors.h>
#endif
#include <openssl/rsa.h>
struct lc_rsa_key_pair {
struct aws_rsa_key_pair base;
EVP_PKEY *key;
};
static void s_rsa_destroy_key(void *key_pair) {
if (key_pair == NULL) {
return;
}
struct aws_rsa_key_pair *base = key_pair;
struct lc_rsa_key_pair *impl = base->impl;
if (impl->key != NULL) {
EVP_PKEY_free(impl->key);
}
aws_rsa_key_pair_base_clean_up(base);
aws_mem_release(base->allocator, impl);
}
/*
* Transforms evp error code into crt error code and raises it as necessary.
* All evp functions follow the same:
* >= 1 for success
* <= 0 for failure
* -2 always indicates incorrect algo for operation
*/
static int s_reinterpret_evp_error_as_crt(int evp_error, const char *function_name) {
if (evp_error > 0) {
return AWS_OP_SUCCESS;
}
/* AWS-LC/BoringSSL error code is uint32_t, but OpenSSL uses unsigned long. */
#if defined(OPENSSL_IS_OPENSSL)
uint32_t error = ERR_peek_error();
#else
unsigned long error = ERR_peek_error();
#endif
int crt_error = AWS_OP_ERR;
const char *error_message = ERR_reason_error_string(error);
if (evp_error == -2) {
crt_error = AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM;
goto on_error;
}
if (ERR_GET_LIB(error) == ERR_LIB_EVP) {
switch (ERR_GET_REASON(error)) {
case EVP_R_BUFFER_TOO_SMALL: {
crt_error = AWS_ERROR_SHORT_BUFFER;
goto on_error;
}
case EVP_R_UNSUPPORTED_ALGORITHM: {
crt_error = AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM;
goto on_error;
}
}
}
crt_error = AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED;
on_error:
AWS_LOGF_ERROR(
AWS_LS_CAL_RSA,
"%s() failed. returned: %d extended error:%lu(%s) aws_error:%s",
function_name,
evp_error,
(unsigned long)error,
error_message == NULL ? "" : error_message,
aws_error_name(crt_error));
return aws_raise_error(crt_error);
}
static int s_set_encryption_ctx_from_algo(EVP_PKEY_CTX *ctx, enum aws_rsa_encryption_algorithm algorithm) {
if (algorithm == AWS_CAL_RSA_ENCRYPTION_PKCS1_5) {
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
return AWS_OP_ERR;
}
} else if (algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 || algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA512) {
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
return AWS_OP_ERR;
}
const EVP_MD *md = algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 ? EVP_sha256() : EVP_sha512();
if (s_reinterpret_evp_error_as_crt(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md), "EVP_PKEY_CTX_set_rsa_oaep_md")) {
return AWS_OP_ERR;
}
} else {
return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
}
return AWS_OP_SUCCESS;
}
static int s_rsa_encrypt(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_encryption_algorithm algorithm,
struct aws_byte_cursor plaintext,
struct aws_byte_buf *out) {
struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
if (ctx == NULL) {
return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
}
if (s_reinterpret_evp_error_as_crt(EVP_PKEY_encrypt_init(ctx), "EVP_PKEY_encrypt_init")) {
goto on_error;
}
if (s_set_encryption_ctx_from_algo(ctx, algorithm)) {
goto on_error;
}
size_t needed_buffer_len = 0;
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_encrypt(ctx, NULL, &needed_buffer_len, plaintext.ptr, plaintext.len),
"EVP_PKEY_encrypt get length")) {
goto on_error;
}
size_t ct_len = out->capacity - out->len;
if (needed_buffer_len > ct_len) {
/*
* OpenSSL 3 seems to no longer fail if the buffer is too short.
* Instead it seems to write out enough data to fill the buffer and then
* updates the out_len to full buffer. It does not seem to corrupt
* memory after the buffer, but behavior is non-ideal.
* Let get length needed for buffer from api first and then manually ensure that
* buffer we have is big enough.
*/
aws_raise_error(AWS_ERROR_SHORT_BUFFER);
goto on_error;
}
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_encrypt(ctx, out->buffer + out->len, &ct_len, plaintext.ptr, plaintext.len), "EVP_PKEY_encrypt")) {
goto on_error;
}
out->len += ct_len;
EVP_PKEY_CTX_free(ctx);
return AWS_OP_SUCCESS;
on_error:
EVP_PKEY_CTX_free(ctx);
return AWS_OP_ERR;
}
static int s_rsa_decrypt(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_encryption_algorithm algorithm,
struct aws_byte_cursor ciphertext,
struct aws_byte_buf *out) {
struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
if (ctx == NULL) {
return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
}
if (s_reinterpret_evp_error_as_crt(EVP_PKEY_decrypt_init(ctx), "EVP_PKEY_decrypt_init")) {
goto on_error;
}
if (s_set_encryption_ctx_from_algo(ctx, algorithm)) {
goto on_error;
}
size_t needed_buffer_len = 0;
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_decrypt(ctx, NULL, &needed_buffer_len, ciphertext.ptr, ciphertext.len),
"EVP_PKEY_decrypt get length")) {
goto on_error;
}
size_t ct_len = out->capacity - out->len;
if (needed_buffer_len > ct_len) {
/*
* manual short buffer length check for OpenSSL 3.
* refer to encrypt implementation for more details
*/
aws_raise_error(AWS_ERROR_SHORT_BUFFER);
goto on_error;
}
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_decrypt(ctx, out->buffer + out->len, &ct_len, ciphertext.ptr, ciphertext.len),
"EVP_PKEY_decrypt")) {
goto on_error;
}
out->len += ct_len;
EVP_PKEY_CTX_free(ctx);
return AWS_OP_SUCCESS;
on_error:
EVP_PKEY_CTX_free(ctx);
return AWS_OP_ERR;
}
static int s_set_signature_ctx_from_algo(EVP_PKEY_CTX *ctx, enum aws_rsa_signature_algorithm algorithm) {
if (algorithm == AWS_CAL_RSA_SIGNATURE_PKCS1_5_SHA256) {
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
return AWS_OP_ERR;
}
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()), "EVP_PKEY_CTX_set_signature_md")) {
return AWS_OP_ERR;
}
} else if (algorithm == AWS_CAL_RSA_SIGNATURE_PSS_SHA256) {
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
return AWS_OP_ERR;
}
#if defined(OPENSSL_IS_BORINGSSL) || OPENSSL_VERSION_NUMBER < 0x10100000L
int saltlen = -1; /* RSA_PSS_SALTLEN_DIGEST not defined in BoringSSL and old versions of openssl */
#else
int saltlen = RSA_PSS_SALTLEN_DIGEST;
#endif
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, saltlen), "EVP_PKEY_CTX_set_rsa_pss_saltlen")) {
return AWS_OP_ERR;
}
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()), "EVP_PKEY_CTX_set_signature_md")) {
return AWS_OP_ERR;
}
} else {
return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
}
return AWS_OP_SUCCESS;
}
static int s_rsa_sign(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_signature_algorithm algorithm,
struct aws_byte_cursor digest,
struct aws_byte_buf *out) {
struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
if (ctx == NULL) {
return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
}
if (s_reinterpret_evp_error_as_crt(EVP_PKEY_sign_init(ctx), "EVP_PKEY_sign_init")) {
goto on_error;
}
if (s_set_signature_ctx_from_algo(ctx, algorithm)) {
goto on_error;
}
size_t needed_buffer_len = 0;
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_sign(ctx, NULL, &needed_buffer_len, digest.ptr, digest.len), "EVP_PKEY_sign get length")) {
goto on_error;
}
size_t ct_len = out->capacity - out->len;
if (needed_buffer_len > ct_len) {
/*
* manual short buffer length check for OpenSSL 3.
* refer to encrypt implementation for more details.
* OpenSSL3 actually does throw an error here, but error code comes from
* component that does not exist in OpenSSL 1.x. So check manually right
* now and we can figure out how to handle it better, once we can
* properly support OpenSSL 3.
*/
aws_raise_error(AWS_ERROR_SHORT_BUFFER);
goto on_error;
}
if (s_reinterpret_evp_error_as_crt(
EVP_PKEY_sign(ctx, out->buffer + out->len, &ct_len, digest.ptr, digest.len), "EVP_PKEY_sign")) {
goto on_error;
}
out->len += ct_len;
EVP_PKEY_CTX_free(ctx);
return AWS_OP_SUCCESS;
on_error:
EVP_PKEY_CTX_free(ctx);
return AWS_OP_ERR;
}
static int s_rsa_verify(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_signature_algorithm algorithm,
struct aws_byte_cursor digest,
struct aws_byte_cursor signature) {
struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
if (ctx == NULL) {
return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
}
if (s_reinterpret_evp_error_as_crt(EVP_PKEY_verify_init(ctx), "EVP_PKEY_verify_init")) {
goto on_error;
}
if (s_set_signature_ctx_from_algo(ctx, algorithm)) {
goto on_error;
}
int error_code = EVP_PKEY_verify(ctx, signature.ptr, signature.len, digest.ptr, digest.len);
EVP_PKEY_CTX_free(ctx);
/* Verify errors slightly differently from the rest of evp functions.
* 0 indicates signature does not pass verification, it's not necessarily an error. */
if (error_code > 0) {
return AWS_OP_SUCCESS;
} else if (error_code == 0) {
return aws_raise_error(AWS_ERROR_CAL_SIGNATURE_VALIDATION_FAILED);
} else {
return s_reinterpret_evp_error_as_crt(error_code, "EVP_PKEY_verify");
}
on_error:
EVP_PKEY_CTX_free(ctx);
return AWS_OP_ERR;
}
static struct aws_rsa_key_vtable s_rsa_key_pair_vtable = {
.encrypt = s_rsa_encrypt,
.decrypt = s_rsa_decrypt,
.sign = s_rsa_sign,
.verify = s_rsa_verify,
};
struct aws_rsa_key_pair *aws_rsa_key_pair_new_from_private_key_pkcs1_impl(
struct aws_allocator *allocator,
struct aws_byte_cursor key) {
struct lc_rsa_key_pair *key_pair_impl = aws_mem_calloc(allocator, 1, sizeof(struct lc_rsa_key_pair));
aws_ref_count_init(&key_pair_impl->base.ref_count, &key_pair_impl->base, s_rsa_destroy_key);
key_pair_impl->base.impl = key_pair_impl;
key_pair_impl->base.allocator = allocator;
aws_byte_buf_init_copy_from_cursor(&key_pair_impl->base.priv, allocator, key);
RSA *rsa = NULL;
EVP_PKEY *private_key = NULL;
if (d2i_RSAPrivateKey(&rsa, (const uint8_t **)&key.ptr, key.len) == NULL) {
aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
goto on_error;
}
private_key = EVP_PKEY_new();
if (private_key == NULL || EVP_PKEY_assign_RSA(private_key, rsa) == 0) {
RSA_free(rsa);
aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
goto on_error;
}
key_pair_impl->key = private_key;
key_pair_impl->base.vtable = &s_rsa_key_pair_vtable;
key_pair_impl->base.key_size_in_bits = EVP_PKEY_bits(key_pair_impl->key);
return &key_pair_impl->base;
on_error:
if (private_key) {
EVP_PKEY_free(private_key);
}
s_rsa_destroy_key(&key_pair_impl->base);
return NULL;
}
struct aws_rsa_key_pair *aws_rsa_key_pair_new_from_public_key_pkcs1_impl(
struct aws_allocator *allocator,
struct aws_byte_cursor key) {
struct lc_rsa_key_pair *key_pair_impl = aws_mem_calloc(allocator, 1, sizeof(struct lc_rsa_key_pair));
aws_ref_count_init(&key_pair_impl->base.ref_count, &key_pair_impl->base, s_rsa_destroy_key);
key_pair_impl->base.impl = key_pair_impl;
key_pair_impl->base.allocator = allocator;
aws_byte_buf_init_copy_from_cursor(&key_pair_impl->base.pub, allocator, key);
RSA *rsa = NULL;
EVP_PKEY *public_key = NULL;
if (d2i_RSAPublicKey(&rsa, (const uint8_t **)&key.ptr, key.len) == NULL) {
aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
goto on_error;
}
public_key = EVP_PKEY_new();
if (public_key == NULL || EVP_PKEY_assign_RSA(public_key, rsa) == 0) {
RSA_free(rsa);
aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
goto on_error;
}
key_pair_impl->key = public_key;
key_pair_impl->base.vtable = &s_rsa_key_pair_vtable;
key_pair_impl->base.key_size_in_bits = EVP_PKEY_bits(key_pair_impl->key);
return &key_pair_impl->base;
on_error:
if (public_key) {
EVP_PKEY_free(public_key);
}
s_rsa_destroy_key(&key_pair_impl->base);
return NULL;
}
|