1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/cal/hmac.h>
#include <aws/cal/private/opensslcrypto_common.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
static void s_destroy(struct aws_hmac *hmac);
static int s_update(struct aws_hmac *hmac, const struct aws_byte_cursor *to_hmac);
static int s_finalize(struct aws_hmac *hmac, struct aws_byte_buf *output);
static struct aws_hmac_vtable s_sha256_hmac_vtable = {
.destroy = s_destroy,
.update = s_update,
.finalize = s_finalize,
.alg_name = "SHA256 HMAC",
.provider = "OpenSSL Compatible libcrypto",
};
static void s_destroy(struct aws_hmac *hmac) {
if (hmac == NULL) {
return;
}
HMAC_CTX *ctx = hmac->impl;
if (ctx != NULL) {
g_aws_openssl_hmac_ctx_table->free_fn(ctx);
}
aws_mem_release(hmac->allocator, hmac);
}
/*
typedef struct hmac_ctx_st {
const EVP_MD *md;
EVP_MD_CTX md_ctx;
EVP_MD_CTX i_ctx;
EVP_MD_CTX o_ctx;
unsigned int key_length;
unsigned char key[HMAC_MAX_MD_CBLOCK];
} HMAC_CTX;
*/
#define SIZEOF_OPENSSL_HMAC_CTX 300 /* <= 288 on 64 bit systems with openssl 1.0.* */
struct aws_hmac *aws_sha256_hmac_default_new(struct aws_allocator *allocator, const struct aws_byte_cursor *secret) {
AWS_ASSERT(secret->ptr);
struct aws_hmac *hmac = aws_mem_acquire(allocator, sizeof(struct aws_hmac));
if (!hmac) {
return NULL;
}
hmac->allocator = allocator;
hmac->vtable = &s_sha256_hmac_vtable;
hmac->digest_size = AWS_SHA256_HMAC_LEN;
HMAC_CTX *ctx = NULL;
ctx = g_aws_openssl_hmac_ctx_table->new_fn();
if (!ctx) {
aws_raise_error(AWS_ERROR_OOM);
aws_mem_release(allocator, hmac);
return NULL;
}
g_aws_openssl_hmac_ctx_table->init_fn(ctx);
hmac->impl = ctx;
hmac->good = true;
if (!g_aws_openssl_hmac_ctx_table->init_ex_fn(ctx, secret->ptr, secret->len, EVP_sha256(), NULL)) {
s_destroy(hmac);
aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
return NULL;
}
return hmac;
}
static int s_update(struct aws_hmac *hmac, const struct aws_byte_cursor *to_hmac) {
if (!hmac->good) {
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
HMAC_CTX *ctx = hmac->impl;
if (AWS_LIKELY(g_aws_openssl_hmac_ctx_table->update_fn(ctx, to_hmac->ptr, to_hmac->len))) {
return AWS_OP_SUCCESS;
}
hmac->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
static int s_finalize(struct aws_hmac *hmac, struct aws_byte_buf *output) {
if (!hmac->good) {
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
HMAC_CTX *ctx = hmac->impl;
size_t buffer_len = output->capacity - output->len;
if (buffer_len < hmac->digest_size) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
if (AWS_LIKELY(
g_aws_openssl_hmac_ctx_table->final_fn(ctx, output->buffer + output->len, (unsigned int *)&buffer_len))) {
hmac->good = false;
output->len += hmac->digest_size;
return AWS_OP_SUCCESS;
}
hmac->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
|