1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/cal/private/rsa.h>
#include <aws/cal/cal.h>
#include <aws/cal/private/der.h>
#include <aws/common/encoding.h>
#define WIN32_NO_STATUS
#include <windows.h>
#undef WIN32_NO_STATUS
#include <bcrypt.h>
#include <ntstatus.h>
static BCRYPT_ALG_HANDLE s_rsa_alg = NULL;
static aws_thread_once s_rsa_thread_once = AWS_THREAD_ONCE_STATIC_INIT;
static void s_load_alg_handle(void *user_data) {
(void)user_data;
/* this function is incredibly slow, LET IT LEAK*/
NTSTATUS status = BCryptOpenAlgorithmProvider(&s_rsa_alg, BCRYPT_RSA_ALGORITHM, MS_PRIMITIVE_PROVIDER, 0);
AWS_FATAL_ASSERT(s_rsa_alg && "BCryptOpenAlgorithmProvider() failed");
AWS_FATAL_ASSERT(BCRYPT_SUCCESS(status));
}
struct bcrypt_rsa_key_pair {
struct aws_rsa_key_pair base;
BCRYPT_KEY_HANDLE key_handle;
struct aws_byte_buf key_buf;
};
static void s_rsa_destroy_key(void *key_pair) {
if (key_pair == NULL) {
return;
}
struct aws_rsa_key_pair *base = key_pair;
struct bcrypt_rsa_key_pair *impl = base->impl;
if (impl->key_handle) {
BCryptDestroyKey(impl->key_handle);
}
aws_byte_buf_clean_up_secure(&impl->key_buf);
aws_rsa_key_pair_base_clean_up(base);
aws_mem_release(base->allocator, impl);
}
/*
* Transforms bcrypt error code into crt error code and raises it as necessary.
*/
static int s_reinterpret_bc_error_as_crt(NTSTATUS error, const char *function_name) {
if (BCRYPT_SUCCESS(error)) {
return AWS_OP_SUCCESS;
}
int crt_error = AWS_OP_ERR;
switch (error) {
case STATUS_BUFFER_TOO_SMALL: {
crt_error = AWS_ERROR_SHORT_BUFFER;
goto on_error;
}
case STATUS_NOT_SUPPORTED: {
crt_error = AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM;
goto on_error;
}
}
crt_error = AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED;
on_error:
AWS_LOGF_ERROR(
AWS_LS_CAL_RSA, "%s() failed. returned: %X aws_error:%s", function_name, error, aws_error_name(crt_error));
return aws_raise_error(crt_error);
}
static int s_check_encryption_algorithm(enum aws_rsa_encryption_algorithm algorithm) {
if (algorithm != AWS_CAL_RSA_ENCRYPTION_PKCS1_5 && algorithm != AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 &&
algorithm != AWS_CAL_RSA_ENCRYPTION_OAEP_SHA512) {
return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
}
return AWS_OP_SUCCESS;
}
static int s_rsa_encrypt(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_encryption_algorithm algorithm,
struct aws_byte_cursor plaintext,
struct aws_byte_buf *out) {
struct bcrypt_rsa_key_pair *key_pair_impl = key_pair->impl;
if (s_check_encryption_algorithm(algorithm)) {
return AWS_OP_ERR;
}
BCRYPT_OAEP_PADDING_INFO padding_info_oaep = {
.pszAlgId = algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 ? BCRYPT_SHA256_ALGORITHM : BCRYPT_SHA512_ALGORITHM,
.pbLabel = NULL,
.cbLabel = 0};
ULONG length_written = 0;
NTSTATUS status = BCryptEncrypt(
key_pair_impl->key_handle,
plaintext.ptr,
(ULONG)plaintext.len,
algorithm == AWS_CAL_RSA_ENCRYPTION_PKCS1_5 ? NULL : &padding_info_oaep,
NULL,
0,
out->buffer + out->len,
(ULONG)(out->capacity - out->len),
&length_written,
algorithm == AWS_CAL_RSA_ENCRYPTION_PKCS1_5 ? BCRYPT_PAD_PKCS1 : BCRYPT_PAD_OAEP);
if (s_reinterpret_bc_error_as_crt(status, "BCryptEncrypt")) {
return AWS_OP_ERR;
}
out->len += length_written;
return AWS_OP_SUCCESS;
}
static int s_rsa_decrypt(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_encryption_algorithm algorithm,
struct aws_byte_cursor ciphertext,
struct aws_byte_buf *out) {
struct bcrypt_rsa_key_pair *key_pair_impl = key_pair->impl;
/* There is a bug in old versions of BCryptDecrypt, where it does not return
* error status if out buffer is too short. So manually check that buffer is
* large enough.
*/
if ((out->capacity - out->len) < aws_rsa_key_pair_block_length(key_pair)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
if (s_check_encryption_algorithm(algorithm)) {
return AWS_OP_ERR;
}
BCRYPT_OAEP_PADDING_INFO padding_info_oaep = {
.pszAlgId = algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 ? BCRYPT_SHA256_ALGORITHM : BCRYPT_SHA512_ALGORITHM,
.pbLabel = NULL,
.cbLabel = 0};
ULONG length_written = 0;
NTSTATUS status = BCryptDecrypt(
key_pair_impl->key_handle,
ciphertext.ptr,
(ULONG)ciphertext.len,
algorithm == AWS_CAL_RSA_ENCRYPTION_PKCS1_5 ? NULL : &padding_info_oaep,
NULL,
0,
out->buffer + out->len,
(ULONG)(out->capacity - out->len),
&length_written,
algorithm == AWS_CAL_RSA_ENCRYPTION_PKCS1_5 ? BCRYPT_PAD_PKCS1 : BCRYPT_PAD_OAEP);
if (s_reinterpret_bc_error_as_crt(status, "BCryptDecrypt")) {
return AWS_OP_ERR;
}
out->len += length_written;
return AWS_OP_SUCCESS;
}
union sign_padding_info {
BCRYPT_PKCS1_PADDING_INFO pkcs1;
BCRYPT_PSS_PADDING_INFO pss;
};
static int s_sign_padding_info_init(union sign_padding_info *info, enum aws_rsa_signature_algorithm algorithm) {
memset(info, 0, sizeof(union sign_padding_info));
if (algorithm == AWS_CAL_RSA_SIGNATURE_PKCS1_5_SHA256) {
info->pkcs1.pszAlgId = BCRYPT_SHA256_ALGORITHM;
return AWS_OP_SUCCESS;
} else if (algorithm == AWS_CAL_RSA_SIGNATURE_PSS_SHA256) {
info->pss.pszAlgId = BCRYPT_SHA256_ALGORITHM;
info->pss.cbSalt = 32;
return AWS_OP_SUCCESS;
}
return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
}
static int s_rsa_sign(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_signature_algorithm algorithm,
struct aws_byte_cursor digest,
struct aws_byte_buf *out) {
struct bcrypt_rsa_key_pair *key_pair_impl = key_pair->impl;
union sign_padding_info padding_info;
if (s_sign_padding_info_init(&padding_info, algorithm)) {
return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
}
ULONG length_written = 0;
NTSTATUS status = BCryptSignHash(
key_pair_impl->key_handle,
&padding_info,
digest.ptr,
(ULONG)digest.len,
out->buffer + out->len,
(ULONG)(out->capacity - out->len),
(ULONG *)&length_written,
algorithm == AWS_CAL_RSA_SIGNATURE_PKCS1_5_SHA256 ? BCRYPT_PAD_PKCS1 : BCRYPT_PAD_PSS);
if (s_reinterpret_bc_error_as_crt(status, "BCryptSignHash")) {
goto on_error;
}
out->len += length_written;
return AWS_OP_SUCCESS;
on_error:
return AWS_OP_ERR;
}
static int s_rsa_verify(
const struct aws_rsa_key_pair *key_pair,
enum aws_rsa_signature_algorithm algorithm,
struct aws_byte_cursor digest,
struct aws_byte_cursor signature) {
struct bcrypt_rsa_key_pair *key_pair_impl = key_pair->impl;
/* BCrypt raises invalid argument if signature does not have correct size.
* Verify size here and raise appropriate error and treat all other errors
* from BCrypt (including invalid arg) in reinterp. */
if (signature.len != aws_rsa_key_pair_signature_length(key_pair)) {
return aws_raise_error(AWS_ERROR_CAL_SIGNATURE_VALIDATION_FAILED);
}
union sign_padding_info padding_info;
if (s_sign_padding_info_init(&padding_info, algorithm)) {
return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
}
/* okay, now we've got a windows compatible signature, let's verify it. */
NTSTATUS status = BCryptVerifySignature(
key_pair_impl->key_handle,
&padding_info,
digest.ptr,
(ULONG)digest.len,
signature.ptr,
(ULONG)signature.len,
algorithm == AWS_CAL_RSA_SIGNATURE_PKCS1_5_SHA256 ? BCRYPT_PAD_PKCS1 : BCRYPT_PAD_PSS);
if (status == STATUS_INVALID_SIGNATURE) {
return aws_raise_error(AWS_ERROR_CAL_SIGNATURE_VALIDATION_FAILED);
}
if (s_reinterpret_bc_error_as_crt(status, "BCryptVerifySignature")) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
static struct aws_rsa_key_vtable s_rsa_key_pair_vtable = {
.encrypt = s_rsa_encrypt,
.decrypt = s_rsa_decrypt,
.sign = s_rsa_sign,
.verify = s_rsa_verify,
};
struct aws_rsa_key_pair *aws_rsa_key_pair_new_from_private_key_pkcs1_impl(
struct aws_allocator *allocator,
struct aws_byte_cursor key) {
aws_thread_call_once(&s_rsa_thread_once, s_load_alg_handle, NULL);
struct bcrypt_rsa_key_pair *key_pair_impl = aws_mem_calloc(allocator, 1, sizeof(struct bcrypt_rsa_key_pair));
aws_ref_count_init(&key_pair_impl->base.ref_count, &key_pair_impl->base, s_rsa_destroy_key);
key_pair_impl->base.impl = key_pair_impl;
key_pair_impl->base.allocator = allocator;
aws_byte_buf_init_copy_from_cursor(&key_pair_impl->base.priv, allocator, key);
struct aws_der_decoder *decoder = aws_der_decoder_new(allocator, key);
if (!decoder) {
goto on_error;
}
struct aws_rsa_private_key_pkcs1 private_key_data;
AWS_ZERO_STRUCT(private_key_data);
if (aws_der_decoder_load_private_rsa_pkcs1(decoder, &private_key_data)) {
goto on_error;
}
/* Hard to predict final blob size, so use pkcs1 key size as upper bound. */
size_t total_buffer_size = key.len + sizeof(BCRYPT_RSAKEY_BLOB);
aws_byte_buf_init(&key_pair_impl->key_buf, allocator, total_buffer_size);
BCRYPT_RSAKEY_BLOB key_blob;
AWS_ZERO_STRUCT(key_blob);
key_blob.Magic = BCRYPT_RSAFULLPRIVATE_MAGIC;
key_blob.BitLength = (ULONG)private_key_data.modulus.len * 8;
key_blob.cbPublicExp = (ULONG)private_key_data.publicExponent.len;
key_blob.cbModulus = (ULONG)private_key_data.modulus.len;
key_blob.cbPrime1 = (ULONG)private_key_data.prime1.len;
key_blob.cbPrime2 = (ULONG)private_key_data.prime2.len;
struct aws_byte_cursor header = aws_byte_cursor_from_array(&key_blob, sizeof(key_blob));
aws_byte_buf_append(&key_pair_impl->key_buf, &header);
LPCWSTR blob_type = BCRYPT_RSAFULLPRIVATE_BLOB;
ULONG flags = 0;
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.publicExponent);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.modulus);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.prime1);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.prime2);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.exponent1);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.exponent2);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.coefficient);
aws_byte_buf_append(&key_pair_impl->key_buf, &private_key_data.privateExponent);
NTSTATUS status = BCryptImportKeyPair(
s_rsa_alg,
NULL,
blob_type,
&key_pair_impl->key_handle,
key_pair_impl->key_buf.buffer,
(ULONG)key_pair_impl->key_buf.len,
flags);
if (s_reinterpret_bc_error_as_crt(status, "BCryptImportKeyPair")) {
goto on_error;
}
key_pair_impl->base.vtable = &s_rsa_key_pair_vtable;
key_pair_impl->base.key_size_in_bits = private_key_data.modulus.len * 8;
aws_der_decoder_destroy(decoder);
return &key_pair_impl->base;
on_error:
aws_der_decoder_destroy(decoder);
s_rsa_destroy_key(&key_pair_impl->base);
return NULL;
}
struct aws_rsa_key_pair *aws_rsa_key_pair_new_from_public_key_pkcs1_impl(
struct aws_allocator *allocator,
struct aws_byte_cursor key) {
aws_thread_call_once(&s_rsa_thread_once, s_load_alg_handle, NULL);
struct bcrypt_rsa_key_pair *key_pair_impl = aws_mem_calloc(allocator, 1, sizeof(struct bcrypt_rsa_key_pair));
aws_ref_count_init(&key_pair_impl->base.ref_count, &key_pair_impl->base, s_rsa_destroy_key);
key_pair_impl->base.impl = key_pair_impl;
key_pair_impl->base.allocator = allocator;
aws_byte_buf_init_copy_from_cursor(&key_pair_impl->base.pub, allocator, key);
struct aws_der_decoder *decoder = aws_der_decoder_new(allocator, key);
if (!decoder) {
goto on_error;
}
struct aws_rsa_public_key_pkcs1 public_key_data;
AWS_ZERO_STRUCT(public_key_data);
if (aws_der_decoder_load_public_rsa_pkcs1(decoder, &public_key_data)) {
goto on_error;
}
/* Hard to predict final blob size, so use pkcs1 key size as upper bound. */
size_t total_buffer_size = key.len + sizeof(BCRYPT_RSAKEY_BLOB);
aws_byte_buf_init(&key_pair_impl->key_buf, allocator, total_buffer_size);
BCRYPT_RSAKEY_BLOB key_blob;
AWS_ZERO_STRUCT(key_blob);
key_blob.Magic = BCRYPT_RSAPUBLIC_MAGIC;
key_blob.BitLength = (ULONG)public_key_data.modulus.len * 8;
key_blob.cbPublicExp = (ULONG)public_key_data.publicExponent.len;
key_blob.cbModulus = (ULONG)public_key_data.modulus.len;
struct aws_byte_cursor header = aws_byte_cursor_from_array(&key_blob, sizeof(key_blob));
aws_byte_buf_append(&key_pair_impl->key_buf, &header);
LPCWSTR blob_type = BCRYPT_PUBLIC_KEY_BLOB;
ULONG flags = 0;
aws_byte_buf_append(&key_pair_impl->key_buf, &public_key_data.publicExponent);
aws_byte_buf_append(&key_pair_impl->key_buf, &public_key_data.modulus);
NTSTATUS status = BCryptImportKeyPair(
s_rsa_alg,
NULL,
blob_type,
&key_pair_impl->key_handle,
key_pair_impl->key_buf.buffer,
(ULONG)key_pair_impl->key_buf.len,
flags);
if (s_reinterpret_bc_error_as_crt(status, "BCryptImportKeyPair")) {
goto on_error;
}
key_pair_impl->base.vtable = &s_rsa_key_pair_vtable;
key_pair_impl->base.key_size_in_bits = public_key_data.modulus.len * 8;
aws_der_decoder_destroy(decoder);
return &key_pair_impl->base;
on_error:
aws_der_decoder_destroy(decoder);
s_rsa_destroy_key(&key_pair_impl->base);
return NULL;
}
|