1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#ifndef AWS_COMMON_ATOMICS_MSVC_INL
#define AWS_COMMON_ATOMICS_MSVC_INL
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
/* These are implicitly included, but helps with editor highlighting */
#include <aws/common/atomics.h>
#include <aws/common/common.h>
/* This file generates level 4 compiler warnings in Visual Studio 2017 and older */
#pragma warning(push, 3)
#include <intrin.h>
#pragma warning(pop)
#include <stdint.h>
#include <stdlib.h>
AWS_EXTERN_C_BEGIN
#if !(defined(_M_IX86) || defined(_M_X64))
# error Atomics are not currently supported for non-x86 MSVC platforms
/*
* In particular, it's not clear that seq_cst will work properly on non-x86
* memory models. We may need to make use of platform-specific intrinsics.
*
* NOTE: Before removing this #error, please make use of the Interlocked*[Acquire|Release]
* variants (if applicable for the new platform)! This will (hopefully) help ensure that
* code breaks before people take too much of a dependency on it.
*/
#endif
/**
* Some general notes:
*
* On x86/x86_64, by default, windows uses acquire/release semantics for volatile accesses;
* however, this is not the case on ARM, and on x86/x86_64 it can be disabled using the
* /volatile:iso compile flag.
*
* Interlocked* functions implicitly have acq_rel semantics; there are ones with weaker
* semantics as well, but because windows is generally used on x86, where there's not a lot
* of performance difference between different ordering modes anyway, we just use the stronger
* forms for now. Further, on x86, they actually have seq_cst semantics as they use locked instructions.
* It is unclear if Interlocked functions guarantee seq_cst on non-x86 platforms.
*
* Since all loads and stores are acq and/or rel already, we can do non-seq_cst loads and stores
* as just volatile variable accesses, but add the appropriate barriers for good measure.
*
* For seq_cst accesses, we take advantage of the facts that (on x86):
* 1. Loads are not reordered with other loads
* 2. Stores are not reordered with other stores
* 3. Locked instructions (including swaps) have a total order
* 4. Non-locked accesses are not reordered with locked instructions
*
* Therefore, if we ensure that all seq_cst stores are locked, we can establish
* a total order on stores, and the intervening ordinary loads will not violate that total
* order.
* See http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf 2.7, which covers
* this use case.
*/
#ifdef _M_IX86
# define AWS_INTERLOCKED_INT(x) _Interlocked##x
typedef long aws_atomic_impl_int_t;
#else
# define AWS_INTERLOCKED_INT(x) _Interlocked##x##64
typedef long long aws_atomic_impl_int_t;
#endif
static inline void aws_atomic_priv_check_order(enum aws_memory_order order) {
#ifndef NDEBUG
switch (order) {
case aws_memory_order_relaxed:
return;
case aws_memory_order_acquire:
return;
case aws_memory_order_release:
return;
case aws_memory_order_acq_rel:
return;
case aws_memory_order_seq_cst:
return;
default: /* Unknown memory order */
abort();
}
#endif
(void)order;
}
enum aws_atomic_mode_priv { aws_atomic_priv_load, aws_atomic_priv_store };
static inline void aws_atomic_priv_barrier_before(enum aws_memory_order order, enum aws_atomic_mode_priv mode) {
aws_atomic_priv_check_order(order);
AWS_ASSERT(mode != aws_atomic_priv_load || order != aws_memory_order_release);
if (order == aws_memory_order_relaxed) {
/* no barriers required for relaxed mode */
return;
}
if (order == aws_memory_order_acquire || mode == aws_atomic_priv_load) {
/* for acquire, we need only use a barrier afterward */
return;
}
/*
* x86: only a compiler barrier is required. For seq_cst, we must use some form of interlocked operation for
* writes, but that's the caller's responsibility.
*
* Volatile ops may or may not imply this barrier, depending on the /volatile: switch, but adding an extra
* barrier doesn't hurt.
*/
_ReadWriteBarrier();
}
static inline void aws_atomic_priv_barrier_after(enum aws_memory_order order, enum aws_atomic_mode_priv mode) {
aws_atomic_priv_check_order(order);
AWS_ASSERT(mode != aws_atomic_priv_store || order != aws_memory_order_acquire);
if (order == aws_memory_order_relaxed) {
/* no barriers required for relaxed mode */
return;
}
if (order == aws_memory_order_release || mode == aws_atomic_priv_store) {
/* for release, we need only use a barrier before */
return;
}
/*
* x86: only a compiler barrier is required. For seq_cst, we must use some form of interlocked operation for
* writes, but that's the caller's responsibility.
*/
_ReadWriteBarrier();
}
/**
* Initializes an atomic variable with an integer value. This operation should be done before any
* other operations on this atomic variable, and must be done before attempting any parallel operations.
*/
AWS_STATIC_IMPL
void aws_atomic_init_int(volatile struct aws_atomic_var *var, size_t n) {
AWS_ATOMIC_VAR_INTVAL(var) = (aws_atomic_impl_int_t)n;
}
/**
* Initializes an atomic variable with a pointer value. This operation should be done before any
* other operations on this atomic variable, and must be done before attempting any parallel operations.
*/
AWS_STATIC_IMPL
void aws_atomic_init_ptr(volatile struct aws_atomic_var *var, void *p) {
AWS_ATOMIC_VAR_PTRVAL(var) = p;
}
/**
* Reads an atomic var as an integer, using the specified ordering, and returns the result.
*/
AWS_STATIC_IMPL
size_t aws_atomic_load_int_explicit(volatile const struct aws_atomic_var *var, enum aws_memory_order memory_order) {
aws_atomic_priv_barrier_before(memory_order, aws_atomic_priv_load);
size_t result = (size_t)AWS_ATOMIC_VAR_INTVAL(var);
aws_atomic_priv_barrier_after(memory_order, aws_atomic_priv_load);
return result;
}
/**
* Reads an atomic var as an pointer, using the specified ordering, and returns the result.
*/
AWS_STATIC_IMPL
void *aws_atomic_load_ptr_explicit(volatile const struct aws_atomic_var *var, enum aws_memory_order memory_order) {
aws_atomic_priv_barrier_before(memory_order, aws_atomic_priv_load);
void *result = AWS_ATOMIC_VAR_PTRVAL(var);
aws_atomic_priv_barrier_after(memory_order, aws_atomic_priv_load);
return result;
}
/**
* Stores an integer into an atomic var, using the specified ordering.
*/
AWS_STATIC_IMPL
void aws_atomic_store_int_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order memory_order) {
if (memory_order != aws_memory_order_seq_cst) {
aws_atomic_priv_barrier_before(memory_order, aws_atomic_priv_store);
AWS_ATOMIC_VAR_INTVAL(var) = (aws_atomic_impl_int_t)n;
aws_atomic_priv_barrier_after(memory_order, aws_atomic_priv_store);
} else {
AWS_INTERLOCKED_INT(Exchange)(&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)n);
}
}
/**
* Stores an pointer into an atomic var, using the specified ordering.
*/
AWS_STATIC_IMPL
void aws_atomic_store_ptr_explicit(volatile struct aws_atomic_var *var, void *p, enum aws_memory_order memory_order) {
aws_atomic_priv_check_order(memory_order);
if (memory_order != aws_memory_order_seq_cst) {
aws_atomic_priv_barrier_before(memory_order, aws_atomic_priv_store);
AWS_ATOMIC_VAR_PTRVAL(var) = p;
aws_atomic_priv_barrier_after(memory_order, aws_atomic_priv_store);
} else {
_InterlockedExchangePointer(&AWS_ATOMIC_VAR_PTRVAL(var), p);
}
}
/**
* Exchanges an integer with the value in an atomic_var, using the specified ordering.
* Returns the value that was previously in the atomic_var.
*/
AWS_STATIC_IMPL
size_t aws_atomic_exchange_int_explicit(
volatile struct aws_atomic_var *var,
size_t n,
enum aws_memory_order memory_order) {
aws_atomic_priv_check_order(memory_order);
return (size_t)AWS_INTERLOCKED_INT(Exchange)(&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)n);
}
/**
* Exchanges a pointer with the value in an atomic_var, using the specified ordering.
* Returns the value that was previously in the atomic_var.
*/
AWS_STATIC_IMPL
void *aws_atomic_exchange_ptr_explicit(
volatile struct aws_atomic_var *var,
void *p,
enum aws_memory_order memory_order) {
aws_atomic_priv_check_order(memory_order);
return _InterlockedExchangePointer(&AWS_ATOMIC_VAR_PTRVAL(var), p);
}
/**
* Atomically compares *var to *expected; if they are equal, atomically sets *var = desired. Otherwise, *expected is set
* to the value in *var. On success, the memory ordering used was order_success; otherwise, it was order_failure.
* order_failure must be no stronger than order_success, and must not be release or acq_rel.
*/
AWS_STATIC_IMPL
bool aws_atomic_compare_exchange_int_explicit(
volatile struct aws_atomic_var *var,
size_t *expected,
size_t desired,
enum aws_memory_order order_success,
enum aws_memory_order order_failure) {
aws_atomic_priv_check_order(order_success);
aws_atomic_priv_check_order(order_failure);
size_t oldval = (size_t)AWS_INTERLOCKED_INT(CompareExchange)(
&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)desired, (aws_atomic_impl_int_t)*expected);
bool successful = oldval == *expected;
*expected = oldval;
return successful;
}
/**
* Atomically compares *var to *expected; if they are equal, atomically sets *var = desired. Otherwise, *expected is set
* to the value in *var. On success, the memory ordering used was order_success; otherwise, it was order_failure.
* order_failure must be no stronger than order_success, and must not be release or acq_rel.
*/
AWS_STATIC_IMPL
bool aws_atomic_compare_exchange_ptr_explicit(
volatile struct aws_atomic_var *var,
void **expected,
void *desired,
enum aws_memory_order order_success,
enum aws_memory_order order_failure) {
aws_atomic_priv_check_order(order_success);
aws_atomic_priv_check_order(order_failure);
void *oldval = _InterlockedCompareExchangePointer(&AWS_ATOMIC_VAR_PTRVAL(var), desired, *expected);
bool successful = oldval == *expected;
*expected = oldval;
return successful;
}
/**
* Atomically adds n to *var, and returns the previous value of *var.
*/
AWS_STATIC_IMPL
size_t aws_atomic_fetch_add_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) {
aws_atomic_priv_check_order(order);
return (size_t)AWS_INTERLOCKED_INT(ExchangeAdd)(&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)n);
}
/**
* Atomically subtracts n from *var, and returns the previous value of *var.
*/
AWS_STATIC_IMPL
size_t aws_atomic_fetch_sub_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) {
aws_atomic_priv_check_order(order);
return (size_t)AWS_INTERLOCKED_INT(ExchangeAdd)(&AWS_ATOMIC_VAR_INTVAL(var), -(aws_atomic_impl_int_t)n);
}
/**
* Atomically ORs n with *var, and returns the previous value of *var.
*/
AWS_STATIC_IMPL
size_t aws_atomic_fetch_or_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) {
aws_atomic_priv_check_order(order);
return (size_t)AWS_INTERLOCKED_INT(Or)(&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)n);
}
/**
* Atomically ANDs n with *var, and returns the previous value of *var.
*/
AWS_STATIC_IMPL
size_t aws_atomic_fetch_and_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) {
aws_atomic_priv_check_order(order);
return (size_t)AWS_INTERLOCKED_INT(And)(&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)n);
}
/**
* Atomically XORs n with *var, and returns the previous value of *var.
*/
AWS_STATIC_IMPL
size_t aws_atomic_fetch_xor_explicit(volatile struct aws_atomic_var *var, size_t n, enum aws_memory_order order) {
aws_atomic_priv_check_order(order);
return (size_t)AWS_INTERLOCKED_INT(Xor)(&AWS_ATOMIC_VAR_INTVAL(var), (aws_atomic_impl_int_t)n);
}
/**
* Provides the same reordering guarantees as an atomic operation with the specified memory order, without
* needing to actually perform an atomic operation.
*/
AWS_STATIC_IMPL
void aws_atomic_thread_fence(enum aws_memory_order order) {
volatile aws_atomic_impl_int_t x = 0;
aws_atomic_priv_check_order(order);
/* On x86: A compiler barrier is sufficient for anything short of seq_cst */
switch (order) {
case aws_memory_order_seq_cst:
AWS_INTERLOCKED_INT(Exchange)(&x, 1);
break;
case aws_memory_order_release:
case aws_memory_order_acquire:
case aws_memory_order_acq_rel:
_ReadWriteBarrier();
break;
case aws_memory_order_relaxed:
/* no-op */
break;
}
}
#define AWS_ATOMICS_HAVE_THREAD_FENCE
AWS_EXTERN_C_END
#endif
|