1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <emmintrin.h>
#include <immintrin.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <aws/common/common.h>
/***** Decode logic *****/
/*
* Decodes ranges of bytes in place
* For each byte of 'in' that is between lo and hi (inclusive), adds offset and _adds_ it to the corresponding offset in
* out.
*/
static inline __m256i translate_range(__m256i in, uint8_t lo, uint8_t hi, uint8_t offset) {
__m256i lovec = _mm256_set1_epi8(lo);
__m256i hivec = _mm256_set1_epi8((char)(hi - lo));
__m256i offsetvec = _mm256_set1_epi8(offset);
__m256i tmp = _mm256_sub_epi8(in, lovec);
/*
* we'll use the unsigned min operator to do our comparison. Note that
* there's no unsigned compare as a comparison intrinsic.
*/
__m256i mask = _mm256_min_epu8(tmp, hivec);
/* if mask = tmp, then keep that byte */
mask = _mm256_cmpeq_epi8(mask, tmp);
tmp = _mm256_add_epi8(tmp, offsetvec);
tmp = _mm256_and_si256(tmp, mask);
return tmp;
}
/*
* For each 8-bit element in in, if the element equals match, add to the corresponding element in out the value decode.
*/
static inline __m256i translate_exact(__m256i in, uint8_t match, uint8_t decode) {
__m256i mask = _mm256_cmpeq_epi8(in, _mm256_set1_epi8(match));
return _mm256_and_si256(mask, _mm256_set1_epi8(decode));
}
/*
* Input: a pointer to a 256-bit vector of base64 characters
* The pointed-to-vector is replaced by a 256-bit vector of 6-bit decoded parts;
* on decode failure, returns false, else returns true on success.
*/
static inline bool decode_vec(__m256i *in) {
__m256i tmp1, tmp2, tmp3;
/*
* Base64 decoding table, see RFC4648
*
* Note that we use multiple vector registers to try to allow the CPU to
* paralellize the merging ORs
*/
tmp1 = translate_range(*in, 'A', 'Z', 0 + 1);
tmp2 = translate_range(*in, 'a', 'z', 26 + 1);
tmp3 = translate_range(*in, '0', '9', 52 + 1);
tmp1 = _mm256_or_si256(tmp1, translate_exact(*in, '+', 62 + 1));
tmp2 = _mm256_or_si256(tmp2, translate_exact(*in, '/', 63 + 1));
tmp3 = _mm256_or_si256(tmp3, _mm256_or_si256(tmp1, tmp2));
/*
* We use 0 to mark decode failures, so everything is decoded to one higher
* than normal. We'll shift this down now.
*/
*in = _mm256_sub_epi8(tmp3, _mm256_set1_epi8(1));
/* If any byte is now zero, we had a decode failure */
__m256i mask = _mm256_cmpeq_epi8(tmp3, _mm256_set1_epi8(0));
return _mm256_testz_si256(mask, mask);
}
AWS_ALIGNED_TYPEDEF(uint8_t, aligned256[32], 32);
/*
* Input: a 256-bit vector, interpreted as 32 * 6-bit values
* Output: a 256-bit vector, the lower 24 bytes of which contain the packed version of the input
*/
static inline __m256i pack_vec(__m256i in) {
/*
* Our basic strategy is to split the input vector into three vectors, for each 6-bit component
* of each 24-bit group, shift the groups into place, then OR the vectors together. Conveniently,
* we can do this on a (32 bit) dword-by-dword basis.
*
* It's important to note that we're interpreting the vector as being little-endian. That is,
* on entry, we have dwords that look like this:
*
* MSB LSB
* 00DD DDDD 00CC CCCC 00BB BBBB 00AA AAAA
*
* And we want to translate to:
*
* MSB LSB
* 0000 0000 AAAA AABB BBBB CCCC CCDD DDDD
*
* After which point we can pack these dwords together to produce our final output.
*/
__m256i maskA = _mm256_set1_epi32(0xFF); // low bits
__m256i maskB = _mm256_set1_epi32(0xFF00);
__m256i maskC = _mm256_set1_epi32(0xFF0000);
__m256i maskD = _mm256_set1_epi32((int)0xFF000000);
__m256i bitsA = _mm256_slli_epi32(_mm256_and_si256(in, maskA), 18);
__m256i bitsB = _mm256_slli_epi32(_mm256_and_si256(in, maskB), 4);
__m256i bitsC = _mm256_srli_epi32(_mm256_and_si256(in, maskC), 10);
__m256i bitsD = _mm256_srli_epi32(_mm256_and_si256(in, maskD), 24);
__m256i dwords = _mm256_or_si256(_mm256_or_si256(bitsA, bitsB), _mm256_or_si256(bitsC, bitsD));
/*
* Now we have a series of dwords with empty MSBs.
* We need to pack them together (and shift down) with a shuffle operation.
* Unfortunately the shuffle operation operates independently within each 128-bit lane,
* so we'll need to do this in two steps: First we compact dwords within each lane, then
* we do a dword shuffle to compact the two lanes together.
* 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 <- byte index (little endian)
* -- 09 0a 0b -- 06 07 08 -- 03 04 05 -- 00 01 02 <- data index
*
* We also reverse the order of 3-byte fragments within each lane; we've constructed
* those fragments in little endian but the order of fragments within the overall
* vector is in memory order (big endian)
*/
const aligned256 shufvec_buf = {
/* clang-format off */
/* MSB */
0xFF, 0xFF, 0xFF, 0xFF, /* Zero out the top 4 bytes of the lane */
2, 1, 0,
6, 5, 4,
10, 9, 8,
14, 13, 12,
0xFF, 0xFF, 0xFF, 0xFF, /* Zero out the top 4 bytes of the lane */
2, 1, 0,
6, 5, 4,
10, 9, 8,
14, 13, 12
/* LSB */
/* clang-format on */
};
__m256i shufvec = _mm256_load_si256((__m256i const *)&shufvec_buf);
dwords = _mm256_shuffle_epi8(dwords, shufvec);
/*
* Now shuffle the 32-bit words:
* A B C 0 D E F 0 -> 0 0 A B C D E F
*/
__m256i shuf32 = _mm256_set_epi32(0, 0, 7, 6, 5, 3, 2, 1);
dwords = _mm256_permutevar8x32_epi32(dwords, shuf32);
return dwords;
}
static inline bool decode(const unsigned char *in, unsigned char *out) {
__m256i vec = _mm256_loadu_si256((__m256i const *)in);
if (!decode_vec(&vec)) {
return false;
}
vec = pack_vec(vec);
/*
* We'll do overlapping writes to get both the low 128 bits and the high 64-bits written.
* Input (memory order): 0 1 2 3 4 5 - - (dwords)
* Input (little endian) - - 5 4 3 2 1 0
* Output in memory:
* [0 1 2 3] [4 5]
*/
__m128i lo = _mm256_extracti128_si256(vec, 0);
/*
* Unfortunately some compilers don't support _mm256_extract_epi64,
* so we'll just copy right out of the vector as a fallback
*/
#ifdef AWS_HAVE_MM256_EXTRACT_EPI64
uint64_t hi = _mm256_extract_epi64(vec, 2);
const uint64_t *p_hi = &hi;
#else
const uint64_t *p_hi = (uint64_t *)&vec + 2;
#endif
_mm_storeu_si128((__m128i *)out, lo);
memcpy(out + 16, p_hi, sizeof(*p_hi));
return true;
}
size_t aws_common_private_base64_decode_sse41(const unsigned char *in, unsigned char *out, size_t len) {
if (len % 4) {
return (size_t)-1;
}
size_t outlen = 0;
while (len > 32) {
if (!decode(in, out)) {
return (size_t)-1;
}
len -= 32;
in += 32;
out += 24;
outlen += 24;
}
if (len > 0) {
unsigned char tmp_in[32];
unsigned char tmp_out[24];
memset(tmp_out, 0xEE, sizeof(tmp_out));
/* We need to ensure the vector contains valid b64 characters */
memset(tmp_in, 'A', sizeof(tmp_in));
memcpy(tmp_in, in, len);
size_t final_out = (3 * len) / 4;
/* Check for end-of-string padding (up to 2 characters) */
for (int i = 0; i < 2; i++) {
if (tmp_in[len - 1] == '=') {
tmp_in[len - 1] = 'A'; /* make sure the inner loop doesn't bail out */
len--;
final_out--;
}
}
if (!decode(tmp_in, tmp_out)) {
return (size_t)-1;
}
/* Check that there are no trailing ones bits */
for (size_t i = final_out; i < sizeof(tmp_out); i++) {
if (tmp_out[i]) {
return (size_t)-1;
}
}
memcpy(out, tmp_out, final_out);
outlen += final_out;
}
return outlen;
}
/***** Encode logic *****/
static inline __m256i encode_chars(__m256i in) {
__m256i tmp1, tmp2, tmp3;
/*
* Base64 encoding table, see RFC4648
*
* We again use fan-in for the ORs here.
*/
tmp1 = translate_range(in, 0, 25, 'A');
tmp2 = translate_range(in, 26, 26 + 25, 'a');
tmp3 = translate_range(in, 52, 61, '0');
tmp1 = _mm256_or_si256(tmp1, translate_exact(in, 62, '+'));
tmp2 = _mm256_or_si256(tmp2, translate_exact(in, 63, '/'));
return _mm256_or_si256(tmp3, _mm256_or_si256(tmp1, tmp2));
}
/*
* Input: A 256-bit vector, interpreted as 24 bytes (LSB) plus 8 bytes of high-byte padding
* Output: A 256-bit vector of base64 characters
*/
static inline __m256i encode_stride(__m256i vec) {
/*
* First, since byte-shuffle operations operate within 128-bit subvectors, swap around the dwords
* to balance the amount of actual data between 128-bit subvectors.
* After this we want the LE representation to look like: -- XX XX XX -- XX XX XX
*/
__m256i shuf32 = _mm256_set_epi32(7, 5, 4, 3, 6, 2, 1, 0);
vec = _mm256_permutevar8x32_epi32(vec, shuf32);
/*
* Next, within each group of 3 bytes, we need to byteswap into little endian form so our bitshifts
* will work properly. We also shuffle around so that each dword has one 3-byte group, plus one byte
* (MSB) of zero-padding.
* Because this is a byte-shuffle, indexes are within each 128-bit subvector.
*
* -- -- -- -- 11 10 09 08 07 06 05 04 03 02 01 00
*/
const aligned256 shufvec_buf = {
/* clang-format off */
/* MSB */
2, 1, 0, 0xFF,
5, 4, 3, 0xFF,
8, 7, 6, 0xFF,
11, 10, 9, 0xFF,
2, 1, 0, 0xFF,
5, 4, 3, 0xFF,
8, 7, 6, 0xFF,
11, 10, 9, 0xFF
/* LSB */
/* clang-format on */
};
vec = _mm256_shuffle_epi8(vec, _mm256_load_si256((__m256i const *)&shufvec_buf));
/*
* Now shift and mask to split out 6-bit groups.
* We'll also do a second byteswap to get back into big-endian
*/
__m256i mask0 = _mm256_set1_epi32(0x3F);
__m256i mask1 = _mm256_set1_epi32(0x3F << 6);
__m256i mask2 = _mm256_set1_epi32(0x3F << 12);
__m256i mask3 = _mm256_set1_epi32(0x3F << 18);
__m256i digit0 = _mm256_and_si256(mask0, vec);
__m256i digit1 = _mm256_and_si256(mask1, vec);
__m256i digit2 = _mm256_and_si256(mask2, vec);
__m256i digit3 = _mm256_and_si256(mask3, vec);
/*
* Because we want to byteswap, the low-order digit0 goes into the
* high-order byte
*/
digit0 = _mm256_slli_epi32(digit0, 24);
digit1 = _mm256_slli_epi32(digit1, 10);
digit2 = _mm256_srli_epi32(digit2, 4);
digit3 = _mm256_srli_epi32(digit3, 18);
vec = _mm256_or_si256(_mm256_or_si256(digit0, digit1), _mm256_or_si256(digit2, digit3));
/* Finally translate to the base64 character set */
return encode_chars(vec);
}
void aws_common_private_base64_encode_sse41(const uint8_t *input, uint8_t *output, size_t inlen) {
__m256i instride, outstride;
while (inlen >= 32) {
/*
* Where possible, we'll load a full vector at a time and ignore the over-read.
* However, if we have < 32 bytes left, this would result in a potential read
* of unreadable pages, so we use bounce buffers below.
*/
instride = _mm256_loadu_si256((__m256i const *)input);
outstride = encode_stride(instride);
_mm256_storeu_si256((__m256i *)output, outstride);
input += 24;
output += 32;
inlen -= 24;
}
while (inlen) {
/*
* We need to go through a bounce buffer for anything remaining, as we
* don't want to over-read or over-write the ends of the buffers.
*/
size_t stridelen = inlen > 24 ? 24 : inlen;
size_t outlen = ((stridelen + 2) / 3) * 4;
memset(&instride, 0, sizeof(instride));
memcpy(&instride, input, stridelen);
outstride = encode_stride(instride);
memcpy(output, &outstride, outlen);
if (inlen < 24) {
if (inlen % 3 >= 1) {
/* AA== or AAA= */
output[outlen - 1] = '=';
}
if (inlen % 3 == 1) {
/* AA== */
output[outlen - 2] = '=';
}
return;
}
input += stridelen;
output += outlen;
inlen -= stridelen;
}
}
|