1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
/* For more information on how the RH hash works and in particular how we do
* deletions, see:
* http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
*/
#include <aws/common/hash_table.h>
#include <aws/common/math.h>
#include <aws/common/private/hash_table_impl.h>
#include <aws/common/string.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
/* Include lookup3.c so we can (potentially) inline it and make use of the mix()
* macro. */
#include <aws/common/private/lookup3.inl>
static void s_suppress_unused_lookup3_func_warnings(void) {
/* We avoid making changes to lookup3 if we can avoid it, but since it has functions
* we're not using, reference them somewhere to suppress the unused function warning.
*/
(void)hashword;
(void)hashword2;
(void)hashlittle;
(void)hashbig;
}
/**
* Calculate the hash for the given key.
* Ensures a reasonable semantics for null keys.
* Ensures that no object ever hashes to 0, which is the sentinal value for an empty hash element.
*/
static uint64_t s_hash_for(struct hash_table_state *state, const void *key) {
AWS_PRECONDITION(hash_table_state_is_valid(state));
s_suppress_unused_lookup3_func_warnings();
if (key == NULL) {
/* The best answer */
return 42;
}
uint64_t hash_code = state->hash_fn(key);
if (!hash_code) {
hash_code = 1;
}
AWS_RETURN_WITH_POSTCONDITION(hash_code, hash_code != 0);
}
/**
* Check equality of two objects, with a reasonable semantics for null.
*/
static bool s_safe_eq_check(aws_hash_callback_eq_fn *equals_fn, const void *a, const void *b) {
/* Short circuit if the pointers are the same */
if (a == b) {
return true;
}
/* If one but not both are null, the objects are not equal */
if (a == NULL || b == NULL) {
return false;
}
/* If both are non-null, call the underlying equals fn */
return equals_fn(a, b);
}
/**
* Check equality of two hash keys, with a reasonable semantics for null keys.
*/
static bool s_hash_keys_eq(struct hash_table_state *state, const void *a, const void *b) {
AWS_PRECONDITION(hash_table_state_is_valid(state));
bool rval = s_safe_eq_check(state->equals_fn, a, b);
AWS_RETURN_WITH_POSTCONDITION(rval, hash_table_state_is_valid(state));
}
static size_t s_index_for(struct hash_table_state *map, struct hash_table_entry *entry) {
AWS_PRECONDITION(hash_table_state_is_valid(map));
size_t index = entry - map->slots;
AWS_RETURN_WITH_POSTCONDITION(index, index < map->size && hash_table_state_is_valid(map));
}
#if 0
/* Useful debugging code for anyone working on this in the future */
static uint64_t s_distance(struct hash_table_state *state, int index) {
return (index - state->slots[index].hash_code) & state->mask;
}
void hash_dump(struct aws_hash_table *tbl) {
struct hash_table_state *state = tbl->p_impl;
printf("Dumping hash table contents:\n");
for (int i = 0; i < state->size; i++) {
printf("%7d: ", i);
struct hash_table_entry *e = &state->slots[i];
if (!e->hash_code) {
printf("EMPTY\n");
} else {
printf("k: %p v: %p hash_code: %lld displacement: %lld\n",
e->element.key, e->element.value, e->hash_code,
(i - e->hash_code) & state->mask);
}
}
}
#endif
#if 0
/* Not currently exposed as an API. Should we have something like this? Useful for benchmarks */
AWS_COMMON_API
void aws_hash_table_print_stats(struct aws_hash_table *table) {
struct hash_table_state *state = table->p_impl;
uint64_t total_disp = 0;
uint64_t max_disp = 0;
printf("\n=== Hash table statistics ===\n");
printf("Table size: %zu/%zu (max load %zu, remaining %zu)\n", state->entry_count, state->size, state->max_load, state->max_load - state->entry_count);
printf("Load factor: %02.2lf%% (max %02.2lf%%)\n",
100.0 * ((double)state->entry_count / (double)state->size),
state->max_load_factor);
for (size_t i = 0; i < state->size; i++) {
if (state->slots[i].hash_code) {
int displacement = distance(state, i);
total_disp += displacement;
if (displacement > max_disp) {
max_disp = displacement;
}
}
}
size_t *disp_counts = calloc(sizeof(*disp_counts), max_disp + 1);
for (size_t i = 0; i < state->size; i++) {
if (state->slots[i].hash_code) {
disp_counts[distance(state, i)]++;
}
}
uint64_t median = 0;
uint64_t passed = 0;
for (uint64_t i = 0; i <= max_disp && passed < total_disp / 2; i++) {
median = i;
passed += disp_counts[i];
}
printf("Displacement statistics: Avg %02.2lf max %llu median %llu\n", (double)total_disp / (double)state->entry_count, max_disp, median);
for (uint64_t i = 0; i <= max_disp; i++) {
printf("Displacement %2lld: %zu entries\n", i, disp_counts[i]);
}
free(disp_counts);
printf("\n");
}
#endif
size_t aws_hash_table_get_entry_count(const struct aws_hash_table *map) {
struct hash_table_state *state = map->p_impl;
return state->entry_count;
}
/* Given a header template, allocates space for a hash table of the appropriate
* size, and copies the state header into this allocated memory, which is
* returned.
*/
static struct hash_table_state *s_alloc_state(const struct hash_table_state *template) {
size_t required_bytes;
if (hash_table_state_required_bytes(template->size, &required_bytes)) {
return NULL;
}
/* An empty slot has hashcode 0. So this marks all slots as empty */
struct hash_table_state *state = aws_mem_calloc(template->alloc, 1, required_bytes);
if (state == NULL) {
return state;
}
*state = *template;
return state;
}
/* Computes the correct size and max_load based on a requested size. */
static int s_update_template_size(struct hash_table_state *template, size_t expected_elements) {
size_t min_size = expected_elements;
if (min_size < 2) {
min_size = 2;
}
/* size is always a power of 2 */
size_t size;
if (aws_round_up_to_power_of_two(min_size, &size)) {
return AWS_OP_ERR;
}
/* Update the template once we've calculated everything successfully */
template->size = size;
template->max_load = (size_t)(template->max_load_factor * (double)template->size);
/* Ensure that there is always at least one empty slot in the hash table */
if (template->max_load >= size) {
template->max_load = size - 1;
}
/* Since size is a power of 2: (index & (size - 1)) == (index % size) */
template->mask = size - 1;
return AWS_OP_SUCCESS;
}
int aws_hash_table_init(
struct aws_hash_table *map,
struct aws_allocator *alloc,
size_t size,
aws_hash_fn *hash_fn,
aws_hash_callback_eq_fn *equals_fn,
aws_hash_callback_destroy_fn *destroy_key_fn,
aws_hash_callback_destroy_fn *destroy_value_fn) {
AWS_PRECONDITION(map != NULL);
AWS_PRECONDITION(alloc != NULL);
AWS_PRECONDITION(hash_fn != NULL);
AWS_PRECONDITION(equals_fn != NULL);
struct hash_table_state template;
template.hash_fn = hash_fn;
template.equals_fn = equals_fn;
template.destroy_key_fn = destroy_key_fn;
template.destroy_value_fn = destroy_value_fn;
template.alloc = alloc;
template.entry_count = 0;
template.max_load_factor = 0.95; /* TODO - make configurable? */
if (s_update_template_size(&template, size)) {
return AWS_OP_ERR;
}
map->p_impl = s_alloc_state(&template);
if (!map->p_impl) {
return AWS_OP_ERR;
}
AWS_SUCCEED_WITH_POSTCONDITION(aws_hash_table_is_valid(map));
}
void aws_hash_table_clean_up(struct aws_hash_table *map) {
AWS_PRECONDITION(map != NULL);
AWS_PRECONDITION(
map->p_impl == NULL || aws_hash_table_is_valid(map),
"Input aws_hash_table [map] must be valid or hash_table_state pointer [map->p_impl] must be NULL, in case "
"aws_hash_table_clean_up was called twice.");
struct hash_table_state *state = map->p_impl;
/* Ensure that we're idempotent */
if (!state) {
return;
}
aws_hash_table_clear(map);
aws_mem_release(map->p_impl->alloc, map->p_impl);
map->p_impl = NULL;
AWS_POSTCONDITION(map->p_impl == NULL);
}
void aws_hash_table_swap(struct aws_hash_table *AWS_RESTRICT a, struct aws_hash_table *AWS_RESTRICT b) {
AWS_PRECONDITION(a != b);
struct aws_hash_table tmp = *a;
*a = *b;
*b = tmp;
}
void aws_hash_table_move(struct aws_hash_table *AWS_RESTRICT to, struct aws_hash_table *AWS_RESTRICT from) {
AWS_PRECONDITION(to != NULL);
AWS_PRECONDITION(from != NULL);
AWS_PRECONDITION(to != from);
AWS_PRECONDITION(aws_hash_table_is_valid(from));
*to = *from;
AWS_ZERO_STRUCT(*from);
AWS_POSTCONDITION(aws_hash_table_is_valid(to));
}
/* Tries to find where the requested key is or where it should go if put.
* Returns AWS_ERROR_SUCCESS if the item existed (leaving it in *entry),
* or AWS_ERROR_HASHTBL_ITEM_NOT_FOUND if it did not (putting its destination
* in *entry). Note that this does not take care of displacing whatever was in
* that entry before.
*
* probe_idx is set to the probe index of the entry found.
*/
static int s_find_entry1(
struct hash_table_state *state,
uint64_t hash_code,
const void *key,
struct hash_table_entry **p_entry,
size_t *p_probe_idx);
/* Inlined fast path: Check the first slot, only. */
/* TODO: Force inlining? */
static int inline s_find_entry(
struct hash_table_state *state,
uint64_t hash_code,
const void *key,
struct hash_table_entry **p_entry,
size_t *p_probe_idx) {
struct hash_table_entry *entry = &state->slots[hash_code & state->mask];
if (entry->hash_code == 0) {
if (p_probe_idx) {
*p_probe_idx = 0;
}
*p_entry = entry;
return AWS_ERROR_HASHTBL_ITEM_NOT_FOUND;
}
if (entry->hash_code == hash_code && s_hash_keys_eq(state, key, entry->element.key)) {
if (p_probe_idx) {
*p_probe_idx = 0;
}
*p_entry = entry;
return AWS_OP_SUCCESS;
}
return s_find_entry1(state, hash_code, key, p_entry, p_probe_idx);
}
static int s_find_entry1(
struct hash_table_state *state,
uint64_t hash_code,
const void *key,
struct hash_table_entry **p_entry,
size_t *p_probe_idx) {
size_t probe_idx = 1;
/* If we find a deleted entry, we record that index and return it as our probe index (i.e. we'll keep searching to
* see if it already exists, but if not we'll overwrite the deleted entry).
*/
int rv;
struct hash_table_entry *entry;
/* This loop is guaranteed to terminate because entry_probe is bounded above by state->mask (i.e. state->size - 1).
* Since probe_idx increments every loop iteration, it will become larger than entry_probe after at most state->size
* transitions and the loop will exit (if it hasn't already)
*/
while (1) {
#ifdef CBMC
# pragma CPROVER check push
# pragma CPROVER check disable "unsigned-overflow"
#endif
uint64_t index = (hash_code + probe_idx) & state->mask;
#ifdef CBMC
# pragma CPROVER check pop
#endif
entry = &state->slots[index];
if (!entry->hash_code) {
rv = AWS_ERROR_HASHTBL_ITEM_NOT_FOUND;
break;
}
if (entry->hash_code == hash_code && s_hash_keys_eq(state, key, entry->element.key)) {
rv = AWS_ERROR_SUCCESS;
break;
}
#ifdef CBMC
# pragma CPROVER check push
# pragma CPROVER check disable "unsigned-overflow"
#endif
uint64_t entry_probe = (index - entry->hash_code) & state->mask;
#ifdef CBMC
# pragma CPROVER check pop
#endif
if (entry_probe < probe_idx) {
/* We now know that our target entry cannot exist; if it did exist,
* it would be at the current location as it has a higher probe
* length than the entry we are examining and thus would have
* preempted that item
*/
rv = AWS_ERROR_HASHTBL_ITEM_NOT_FOUND;
break;
}
probe_idx++;
}
*p_entry = entry;
if (p_probe_idx) {
*p_probe_idx = probe_idx;
}
return rv;
}
int aws_hash_table_find(const struct aws_hash_table *map, const void *key, struct aws_hash_element **p_elem) {
AWS_PRECONDITION(aws_hash_table_is_valid(map));
AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(p_elem), "Input aws_hash_element pointer [p_elem] must be writable.");
struct hash_table_state *state = map->p_impl;
uint64_t hash_code = s_hash_for(state, key);
struct hash_table_entry *entry;
int rv = s_find_entry(state, hash_code, key, &entry, NULL);
if (rv == AWS_ERROR_SUCCESS) {
*p_elem = &entry->element;
} else {
*p_elem = NULL;
}
AWS_SUCCEED_WITH_POSTCONDITION(aws_hash_table_is_valid(map));
}
/**
* Attempts to find a home for the given entry.
* If the entry was empty (i.e. hash-code of 0), then the function does nothing and returns NULL
* Otherwise, it emplaces the item, and returns a pointer to the newly emplaced entry.
* This function is only called after the hash-table has been expanded to fit the new element,
* so it should never fail.
*/
static struct hash_table_entry *s_emplace_item(
struct hash_table_state *state,
struct hash_table_entry entry,
size_t probe_idx) {
AWS_PRECONDITION(hash_table_state_is_valid(state));
if (entry.hash_code == 0) {
AWS_RETURN_WITH_POSTCONDITION(NULL, hash_table_state_is_valid(state));
}
struct hash_table_entry *rval = NULL;
/* Since a valid hash_table has at least one empty element, this loop will always terminate in at most linear time
*/
while (entry.hash_code != 0) {
#ifdef CBMC
# pragma CPROVER check push
# pragma CPROVER check disable "unsigned-overflow"
#endif
size_t index = (size_t)(entry.hash_code + probe_idx) & state->mask;
#ifdef CBMC
# pragma CPROVER check pop
#endif
struct hash_table_entry *victim = &state->slots[index];
#ifdef CBMC
# pragma CPROVER check push
# pragma CPROVER check disable "unsigned-overflow"
#endif
size_t victim_probe_idx = (size_t)(index - victim->hash_code) & state->mask;
#ifdef CBMC
# pragma CPROVER check pop
#endif
if (!victim->hash_code || victim_probe_idx < probe_idx) {
/* The first thing we emplace is the entry itself. A pointer to its location becomes the rval */
if (!rval) {
rval = victim;
}
struct hash_table_entry tmp = *victim;
*victim = entry;
entry = tmp;
probe_idx = victim_probe_idx + 1;
} else {
probe_idx++;
}
}
AWS_RETURN_WITH_POSTCONDITION(
rval,
hash_table_state_is_valid(state) && rval >= &state->slots[0] && rval < &state->slots[state->size],
"Output hash_table_entry pointer [rval] must point in the slots of [state].");
}
static int s_expand_table(struct aws_hash_table *map) {
struct hash_table_state *old_state = map->p_impl;
struct hash_table_state template = *old_state;
size_t new_size;
if (aws_mul_size_checked(template.size, 2, &new_size)) {
return AWS_OP_ERR;
}
if (s_update_template_size(&template, new_size)) {
return AWS_OP_ERR;
}
struct hash_table_state *new_state = s_alloc_state(&template);
if (!new_state) {
return AWS_OP_ERR;
}
for (size_t i = 0; i < old_state->size; i++) {
struct hash_table_entry entry = old_state->slots[i];
if (entry.hash_code) {
/* We can directly emplace since we know we won't put the same item twice */
s_emplace_item(new_state, entry, 0);
}
}
map->p_impl = new_state;
aws_mem_release(new_state->alloc, old_state);
return AWS_OP_SUCCESS;
}
int aws_hash_table_create(
struct aws_hash_table *map,
const void *key,
struct aws_hash_element **p_elem,
int *was_created) {
struct hash_table_state *state = map->p_impl;
uint64_t hash_code = s_hash_for(state, key);
struct hash_table_entry *entry;
size_t probe_idx;
int ignored;
if (!was_created) {
was_created = &ignored;
}
int rv = s_find_entry(state, hash_code, key, &entry, &probe_idx);
if (rv == AWS_ERROR_SUCCESS) {
if (p_elem) {
*p_elem = &entry->element;
}
*was_created = 0;
return AWS_OP_SUCCESS;
}
/* Okay, we need to add an entry. Check the load factor first. */
size_t incr_entry_count;
if (aws_add_size_checked(state->entry_count, 1, &incr_entry_count)) {
return AWS_OP_ERR;
}
if (incr_entry_count > state->max_load) {
rv = s_expand_table(map);
if (rv != AWS_OP_SUCCESS) {
/* Any error was already raised in expand_table */
return rv;
}
state = map->p_impl;
/* If we expanded the table, we need to discard the probe index returned from find_entry,
* as it's likely that we can find a more desirable slot. If we don't, then later gets will
* terminate before reaching our probe index.
* n.b. currently we ignore this probe_idx subsequently, but leaving
this here so we don't
* forget when we optimize later. */
probe_idx = 0;
}
state->entry_count++;
struct hash_table_entry new_entry;
new_entry.element.key = key;
new_entry.element.value = NULL;
new_entry.hash_code = hash_code;
entry = s_emplace_item(state, new_entry, probe_idx);
if (p_elem) {
*p_elem = &entry->element;
}
*was_created = 1;
return AWS_OP_SUCCESS;
}
AWS_COMMON_API
int aws_hash_table_put(struct aws_hash_table *map, const void *key, void *value, int *was_created) {
struct aws_hash_element *p_elem;
int was_created_fallback;
if (!was_created) {
was_created = &was_created_fallback;
}
if (aws_hash_table_create(map, key, &p_elem, was_created)) {
return AWS_OP_ERR;
}
/*
* aws_hash_table_create might resize the table, which results in map->p_impl changing.
* It is therefore important to wait to read p_impl until after we return.
*/
struct hash_table_state *state = map->p_impl;
if (!*was_created) {
if (p_elem->key != key && state->destroy_key_fn) {
state->destroy_key_fn((void *)p_elem->key);
}
if (state->destroy_value_fn) {
state->destroy_value_fn((void *)p_elem->value);
}
}
p_elem->key = key;
p_elem->value = value;
return AWS_OP_SUCCESS;
}
/* Clears an entry. Does _not_ invoke destructor callbacks.
* Returns the last slot touched (note that if we wrap, we'll report an index
* lower than the original entry's index)
*/
static size_t s_remove_entry(struct hash_table_state *state, struct hash_table_entry *entry) {
AWS_PRECONDITION(hash_table_state_is_valid(state));
AWS_PRECONDITION(state->entry_count > 0);
AWS_PRECONDITION(
entry >= &state->slots[0] && entry < &state->slots[state->size],
"Input hash_table_entry [entry] pointer must point in the available slots.");
state->entry_count--;
/* Shift subsequent entries back until we find an entry that belongs at its
* current position. This is important to ensure that subsequent searches
* don't terminate at the removed element.
*/
size_t index = s_index_for(state, entry);
/* There is always at least one empty slot in the hash table, so this loop always terminates */
while (1) {
size_t next_index = (index + 1) & state->mask;
/* If we hit an empty slot, stop */
if (!state->slots[next_index].hash_code) {
break;
}
/* If the next slot is at the start of the probe sequence, stop.
* We know that nothing with an earlier home slot is after this;
* otherwise this index-zero entry would have been evicted from its
* home.
*/
if ((state->slots[next_index].hash_code & state->mask) == next_index) {
break;
}
/* Okay, shift this one back */
state->slots[index] = state->slots[next_index];
index = next_index;
}
/* Clear the entry we shifted out of */
AWS_ZERO_STRUCT(state->slots[index]);
AWS_RETURN_WITH_POSTCONDITION(index, hash_table_state_is_valid(state) && index <= state->size);
}
int aws_hash_table_remove(
struct aws_hash_table *map,
const void *key,
struct aws_hash_element *p_value,
int *was_present) {
AWS_PRECONDITION(aws_hash_table_is_valid(map));
AWS_PRECONDITION(
p_value == NULL || AWS_OBJECT_PTR_IS_WRITABLE(p_value), "Input pointer [p_value] must be NULL or writable.");
AWS_PRECONDITION(
was_present == NULL || AWS_OBJECT_PTR_IS_WRITABLE(was_present),
"Input pointer [was_present] must be NULL or writable.");
struct hash_table_state *state = map->p_impl;
uint64_t hash_code = s_hash_for(state, key);
struct hash_table_entry *entry;
int ignored;
if (!was_present) {
was_present = &ignored;
}
int rv = s_find_entry(state, hash_code, key, &entry, NULL);
if (rv != AWS_ERROR_SUCCESS) {
*was_present = 0;
AWS_SUCCEED_WITH_POSTCONDITION(aws_hash_table_is_valid(map));
}
*was_present = 1;
if (p_value) {
*p_value = entry->element;
} else {
if (state->destroy_key_fn) {
state->destroy_key_fn((void *)entry->element.key);
}
if (state->destroy_value_fn) {
state->destroy_value_fn(entry->element.value);
}
}
s_remove_entry(state, entry);
AWS_SUCCEED_WITH_POSTCONDITION(aws_hash_table_is_valid(map));
}
int aws_hash_table_remove_element(struct aws_hash_table *map, struct aws_hash_element *p_value) {
AWS_PRECONDITION(aws_hash_table_is_valid(map));
AWS_PRECONDITION(p_value != NULL);
struct hash_table_state *state = map->p_impl;
struct hash_table_entry *entry = AWS_CONTAINER_OF(p_value, struct hash_table_entry, element);
s_remove_entry(state, entry);
AWS_SUCCEED_WITH_POSTCONDITION(aws_hash_table_is_valid(map));
}
int aws_hash_table_foreach(
struct aws_hash_table *map,
int (*callback)(void *context, struct aws_hash_element *pElement),
void *context) {
for (struct aws_hash_iter iter = aws_hash_iter_begin(map); !aws_hash_iter_done(&iter); aws_hash_iter_next(&iter)) {
int rv = callback(context, &iter.element);
if (rv & AWS_COMMON_HASH_TABLE_ITER_ERROR) {
int error = aws_last_error();
if (error == AWS_ERROR_SUCCESS) {
aws_raise_error(AWS_ERROR_UNKNOWN);
}
return AWS_OP_ERR;
}
if (rv & AWS_COMMON_HASH_TABLE_ITER_DELETE) {
aws_hash_iter_delete(&iter, false);
}
if (!(rv & AWS_COMMON_HASH_TABLE_ITER_CONTINUE)) {
break;
}
}
return AWS_OP_SUCCESS;
}
bool aws_hash_table_eq(
const struct aws_hash_table *a,
const struct aws_hash_table *b,
aws_hash_callback_eq_fn *value_eq) {
AWS_PRECONDITION(aws_hash_table_is_valid(a));
AWS_PRECONDITION(aws_hash_table_is_valid(b));
AWS_PRECONDITION(value_eq != NULL);
if (aws_hash_table_get_entry_count(a) != aws_hash_table_get_entry_count(b)) {
AWS_RETURN_WITH_POSTCONDITION(false, aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b));
}
/*
* Now that we have established that the two tables have the same number of
* entries, we can simply iterate one and compare against the same key in
* the other.
*/
for (size_t i = 0; i < a->p_impl->size; ++i) {
const struct hash_table_entry *const a_entry = &a->p_impl->slots[i];
if (a_entry->hash_code == 0) {
continue;
}
struct aws_hash_element *b_element = NULL;
aws_hash_table_find(b, a_entry->element.key, &b_element);
if (!b_element) {
/* Key is present in A only */
AWS_RETURN_WITH_POSTCONDITION(false, aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b));
}
if (!s_safe_eq_check(value_eq, a_entry->element.value, b_element->value)) {
AWS_RETURN_WITH_POSTCONDITION(false, aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b));
}
}
AWS_RETURN_WITH_POSTCONDITION(true, aws_hash_table_is_valid(a) && aws_hash_table_is_valid(b));
}
/**
* Given an iterator, and a start slot, find the next available filled slot if it exists
* Otherwise, return an iter that will return true for aws_hash_iter_done().
* Note that aws_hash_iter_is_valid() need not hold on entry to the function, since
* it can be called on a partially constructed iter from aws_hash_iter_begin().
*
* Note that calling this on an iterator which is "done" is idempotent: it will return another
* iterator which is "done".
*/
static inline void s_get_next_element(struct aws_hash_iter *iter, size_t start_slot) {
AWS_PRECONDITION(iter != NULL);
AWS_PRECONDITION(aws_hash_table_is_valid(iter->map));
struct hash_table_state *state = iter->map->p_impl;
size_t limit = iter->limit;
for (size_t i = start_slot; i < limit; i++) {
struct hash_table_entry *entry = &state->slots[i];
if (entry->hash_code) {
iter->element = entry->element;
iter->slot = i;
iter->status = AWS_HASH_ITER_STATUS_READY_FOR_USE;
return;
}
}
iter->element.key = NULL;
iter->element.value = NULL;
iter->slot = iter->limit;
iter->status = AWS_HASH_ITER_STATUS_DONE;
AWS_POSTCONDITION(aws_hash_iter_is_valid(iter));
}
struct aws_hash_iter aws_hash_iter_begin(const struct aws_hash_table *map) {
AWS_PRECONDITION(aws_hash_table_is_valid(map));
struct hash_table_state *state = map->p_impl;
struct aws_hash_iter iter;
AWS_ZERO_STRUCT(iter);
iter.map = map;
iter.limit = state->size;
s_get_next_element(&iter, 0);
AWS_RETURN_WITH_POSTCONDITION(
iter,
aws_hash_iter_is_valid(&iter) &&
(iter.status == AWS_HASH_ITER_STATUS_DONE || iter.status == AWS_HASH_ITER_STATUS_READY_FOR_USE),
"The status of output aws_hash_iter [iter] must either be DONE or READY_FOR_USE.");
}
bool aws_hash_iter_done(const struct aws_hash_iter *iter) {
AWS_PRECONDITION(aws_hash_iter_is_valid(iter));
AWS_PRECONDITION(
iter->status == AWS_HASH_ITER_STATUS_DONE || iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE,
"Input aws_hash_iter [iter] must either be done, or ready to use.");
/*
* SIZE_MAX is a valid (non-terminal) value for iter->slot in the event that
* we delete slot 0. See comments in aws_hash_iter_delete.
*
* As such we must use == rather than >= here.
*/
bool rval = (iter->slot == iter->limit);
AWS_POSTCONDITION(
iter->status == AWS_HASH_ITER_STATUS_DONE || iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE,
"The status of output aws_hash_iter [iter] must either be DONE or READY_FOR_USE.");
AWS_POSTCONDITION(
rval == (iter->status == AWS_HASH_ITER_STATUS_DONE),
"Output bool [rval] must be true if and only if the status of [iter] is DONE.");
AWS_POSTCONDITION(aws_hash_iter_is_valid(iter));
return rval;
}
void aws_hash_iter_next(struct aws_hash_iter *iter) {
AWS_PRECONDITION(aws_hash_iter_is_valid(iter));
#ifdef CBMC
# pragma CPROVER check push
# pragma CPROVER check disable "unsigned-overflow"
#endif
s_get_next_element(iter, iter->slot + 1);
#ifdef CBMC
# pragma CPROVER check pop
#endif
AWS_POSTCONDITION(
iter->status == AWS_HASH_ITER_STATUS_DONE || iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE,
"The status of output aws_hash_iter [iter] must either be DONE or READY_FOR_USE.");
AWS_POSTCONDITION(aws_hash_iter_is_valid(iter));
}
void aws_hash_iter_delete(struct aws_hash_iter *iter, bool destroy_contents) {
AWS_PRECONDITION(
iter->status == AWS_HASH_ITER_STATUS_READY_FOR_USE, "Input aws_hash_iter [iter] must be ready for use.");
AWS_PRECONDITION(aws_hash_iter_is_valid(iter));
AWS_PRECONDITION(
iter->map->p_impl->entry_count > 0,
"The hash_table_state pointed by input [iter] must contain at least one entry.");
struct hash_table_state *state = iter->map->p_impl;
if (destroy_contents) {
if (state->destroy_key_fn) {
state->destroy_key_fn((void *)iter->element.key);
}
if (state->destroy_value_fn) {
state->destroy_value_fn(iter->element.value);
}
}
size_t last_index = s_remove_entry(state, &state->slots[iter->slot]);
/* If we shifted elements that are not part of the window we intend to iterate
* over, it means we shifted an element that we already visited into the
* iter->limit - 1 position. To avoid double iteration, we'll now reduce the
* limit to compensate.
*
* Note that last_index cannot equal iter->slot, because slots[iter->slot]
* is empty before we start walking the table.
*/
if (last_index < iter->slot || last_index >= iter->limit) {
iter->limit--;
}
/*
* After removing this entry, the next entry might be in the same slot, or
* in some later slot, or we might have no further entries.
*
* We also expect that the caller will call aws_hash_iter_done and aws_hash_iter_next
* after this delete call. This gets a bit tricky if we just deleted the value
* in slot 0, and a new value has shifted in.
*
* To deal with this, we'll just step back one slot, and let _next start iteration
* at our current slot. Note that if we just deleted slot 0, this will result in
* underflowing to SIZE_MAX; we have to take care in aws_hash_iter_done to avoid
* treating this as an end-of-iteration condition.
*/
#ifdef CBMC
# pragma CPROVER check push
# pragma CPROVER check disable "unsigned-overflow"
#endif
iter->slot--;
#ifdef CBMC
# pragma CPROVER check pop
#endif
iter->status = AWS_HASH_ITER_STATUS_DELETE_CALLED;
AWS_POSTCONDITION(
iter->status == AWS_HASH_ITER_STATUS_DELETE_CALLED,
"The status of output aws_hash_iter [iter] must be DELETE_CALLED.");
AWS_POSTCONDITION(aws_hash_iter_is_valid(iter));
}
void aws_hash_table_clear(struct aws_hash_table *map) {
AWS_PRECONDITION(aws_hash_table_is_valid(map));
struct hash_table_state *state = map->p_impl;
/* Check that we have at least one destructor before iterating over the table */
if (state->destroy_key_fn || state->destroy_value_fn) {
for (size_t i = 0; i < state->size; ++i) {
struct hash_table_entry *entry = &state->slots[i];
if (!entry->hash_code) {
continue;
}
if (state->destroy_key_fn) {
state->destroy_key_fn((void *)entry->element.key);
}
if (state->destroy_value_fn) {
state->destroy_value_fn(entry->element.value);
}
}
}
/* Since hash code 0 represents an empty slot we can just zero out the
* entire table. */
memset(state->slots, 0, sizeof(*state->slots) * state->size);
state->entry_count = 0;
AWS_POSTCONDITION(aws_hash_table_is_valid(map));
}
uint64_t aws_hash_c_string(const void *item) {
AWS_PRECONDITION(aws_c_string_is_valid(item));
const char *str = item;
/* first digits of pi in hex */
uint32_t b = 0x3243F6A8, c = 0x885A308D;
hashlittle2(str, strlen(str), &c, &b);
return ((uint64_t)b << 32) | c;
}
uint64_t aws_hash_string(const void *item) {
AWS_PRECONDITION(aws_string_is_valid(item));
const struct aws_string *str = item;
/* first digits of pi in hex */
uint32_t b = 0x3243F6A8, c = 0x885A308D;
hashlittle2(aws_string_bytes(str), str->len, &c, &b);
AWS_RETURN_WITH_POSTCONDITION(((uint64_t)b << 32) | c, aws_string_is_valid(str));
}
uint64_t aws_hash_byte_cursor_ptr(const void *item) {
AWS_PRECONDITION(aws_byte_cursor_is_valid(item));
const struct aws_byte_cursor *cur = item;
/* first digits of pi in hex */
uint32_t b = 0x3243F6A8, c = 0x885A308D;
hashlittle2(cur->ptr, cur->len, &c, &b);
AWS_RETURN_WITH_POSTCONDITION(((uint64_t)b << 32) | c, aws_byte_cursor_is_valid(cur)); /* NOLINT */
}
uint64_t aws_hash_ptr(const void *item) {
/* Since the numeric value of the pointer is considered, not the memory behind it, 0 is an acceptable value */
/* first digits of e in hex
* 2.b7e 1516 28ae d2a6 */
uint32_t b = 0x2b7e1516, c = 0x28aed2a6;
hashlittle2(&item, sizeof(item), &c, &b);
return ((uint64_t)b << 32) | c;
}
uint64_t aws_hash_combine(uint64_t item1, uint64_t item2) {
uint32_t b = item2 & 0xFFFFFFFF; /* LSB */
uint32_t c = item2 >> 32; /* MSB */
hashlittle2(&item1, sizeof(item1), &c, &b);
return ((uint64_t)b << 32) | c;
}
bool aws_hash_callback_c_str_eq(const void *a, const void *b) {
AWS_PRECONDITION(aws_c_string_is_valid(a));
AWS_PRECONDITION(aws_c_string_is_valid(b));
bool rval = !strcmp(a, b);
AWS_RETURN_WITH_POSTCONDITION(rval, aws_c_string_is_valid(a) && aws_c_string_is_valid(b));
}
bool aws_hash_callback_string_eq(const void *a, const void *b) {
AWS_PRECONDITION(aws_string_is_valid(a));
AWS_PRECONDITION(aws_string_is_valid(b));
bool rval = aws_string_eq(a, b);
AWS_RETURN_WITH_POSTCONDITION(rval, aws_string_is_valid(a) && aws_string_is_valid(b));
}
void aws_hash_callback_string_destroy(void *a) {
AWS_PRECONDITION(aws_string_is_valid(a));
aws_string_destroy(a);
}
bool aws_ptr_eq(const void *a, const void *b) {
return a == b;
}
/**
* Best-effort check of hash_table_state data-structure invariants
* Some invariants, such as that the number of entries is actually the
* same as the entry_count field, would require a loop to check
*/
bool aws_hash_table_is_valid(const struct aws_hash_table *map) {
return map && map->p_impl && hash_table_state_is_valid(map->p_impl);
}
/**
* Best-effort check of hash_table_state data-structure invariants
* Some invariants, such as that the number of entries is actually the
* same as the entry_count field, would require a loop to check
*/
bool hash_table_state_is_valid(const struct hash_table_state *map) {
if (!map) {
return false;
}
bool hash_fn_nonnull = (map->hash_fn != NULL);
bool equals_fn_nonnull = (map->equals_fn != NULL);
/*destroy_key_fn and destroy_value_fn are both allowed to be NULL*/
bool alloc_nonnull = (map->alloc != NULL);
bool size_at_least_two = (map->size >= 2);
bool size_is_power_of_two = aws_is_power_of_two(map->size);
bool entry_count = (map->entry_count <= map->max_load);
bool max_load = (map->max_load < map->size);
bool mask_is_correct = (map->mask == (map->size - 1));
bool max_load_factor_bounded = map->max_load_factor == 0.95; //(map->max_load_factor < 1.0);
bool slots_allocated = AWS_MEM_IS_WRITABLE(&map->slots[0], sizeof(map->slots[0]) * map->size);
return hash_fn_nonnull && equals_fn_nonnull && alloc_nonnull && size_at_least_two && size_is_power_of_two &&
entry_count && max_load && mask_is_correct && max_load_factor_bounded && slots_allocated;
}
/**
* Given a pointer to a hash_iter, checks that it is well-formed, with all data-structure invariants.
*/
bool aws_hash_iter_is_valid(const struct aws_hash_iter *iter) {
if (!iter) {
return false;
}
if (!iter->map) {
return false;
}
if (!aws_hash_table_is_valid(iter->map)) {
return false;
}
if (iter->limit > iter->map->p_impl->size) {
return false;
}
switch (iter->status) {
case AWS_HASH_ITER_STATUS_DONE:
/* Done iff slot == limit */
return iter->slot == iter->limit;
case AWS_HASH_ITER_STATUS_DELETE_CALLED:
/* iter->slot can underflow to SIZE_MAX after a delete
* see the comments for aws_hash_iter_delete() */
return iter->slot <= iter->limit || iter->slot == SIZE_MAX;
case AWS_HASH_ITER_STATUS_READY_FOR_USE:
/* A slot must point to a valid location (i.e. hash_code != 0) */
return iter->slot < iter->limit && iter->map->p_impl->slots[iter->slot].hash_code != 0;
}
/* Invalid status code */
return false;
}
/**
* Determine the total number of bytes needed for a hash-table with
* "size" slots. If the result would overflow a size_t, return
* AWS_OP_ERR; otherwise, return AWS_OP_SUCCESS with the result in
* "required_bytes".
*/
int hash_table_state_required_bytes(size_t size, size_t *required_bytes) {
size_t elemsize;
if (aws_mul_size_checked(size, sizeof(struct hash_table_entry), &elemsize)) {
return AWS_OP_ERR;
}
if (aws_add_size_checked(elemsize, sizeof(struct hash_table_state), required_bytes)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
|