1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/linked_hash_table.h>
static void s_element_destroy(void *value) {
struct aws_linked_hash_table_node *node = value;
if (node->table->user_on_value_destroy) {
node->table->user_on_value_destroy(node->value);
}
aws_linked_list_remove(&node->node);
aws_mem_release(node->table->allocator, node);
}
int aws_linked_hash_table_init(
struct aws_linked_hash_table *table,
struct aws_allocator *allocator,
aws_hash_fn *hash_fn,
aws_hash_callback_eq_fn *equals_fn,
aws_hash_callback_destroy_fn *destroy_key_fn,
aws_hash_callback_destroy_fn *destroy_value_fn,
size_t initial_item_count) {
AWS_ASSERT(table);
AWS_ASSERT(allocator);
AWS_ASSERT(hash_fn);
AWS_ASSERT(equals_fn);
table->allocator = allocator;
table->user_on_value_destroy = destroy_value_fn;
table->user_on_key_destroy = destroy_key_fn;
aws_linked_list_init(&table->list);
return aws_hash_table_init(
&table->table, allocator, initial_item_count, hash_fn, equals_fn, destroy_key_fn, s_element_destroy);
}
void aws_linked_hash_table_clean_up(struct aws_linked_hash_table *table) {
/* clearing the table will remove all elements. That will also deallocate
* any table entries we currently have. */
aws_hash_table_clean_up(&table->table);
AWS_ZERO_STRUCT(*table);
}
int aws_linked_hash_table_find(struct aws_linked_hash_table *table, const void *key, void **p_value) {
struct aws_hash_element *element = NULL;
int err_val = aws_hash_table_find(&table->table, key, &element);
if (err_val || !element) {
*p_value = NULL;
return err_val;
}
struct aws_linked_hash_table_node *linked_node = element->value;
*p_value = linked_node->value;
return AWS_OP_SUCCESS;
}
int aws_linked_hash_table_find_and_move_to_back(struct aws_linked_hash_table *table, const void *key, void **p_value) {
struct aws_hash_element *element = NULL;
int err_val = aws_hash_table_find(&table->table, key, &element);
if (err_val || !element) {
*p_value = NULL;
return err_val;
}
struct aws_linked_hash_table_node *linked_node = element->value;
*p_value = linked_node->value;
/* on access, remove from current place in list and move it to the back. */
aws_linked_hash_table_move_node_to_end_of_list(table, linked_node);
return AWS_OP_SUCCESS;
}
int aws_linked_hash_table_put(struct aws_linked_hash_table *table, const void *key, void *p_value) {
struct aws_linked_hash_table_node *node =
aws_mem_calloc(table->allocator, 1, sizeof(struct aws_linked_hash_table_node));
if (!node) {
return AWS_OP_ERR;
}
struct aws_hash_element *element = NULL;
int was_added = 0;
int err_val = aws_hash_table_create(&table->table, key, &element, &was_added);
if (err_val) {
aws_mem_release(table->allocator, node);
return err_val;
}
if (element->value) {
AWS_ASSERT(!was_added);
/*
* There's an existing element with a key that is "equal" to the submitted key. We need to destroy that
* existing element's value if applicable.
*/
s_element_destroy(element->value);
/*
* We're reusing an old element. The keys might be different references but "equal" via comparison. In that
* case we need to destroy the key (if appropriate) and point the element to the new key. This underhanded
* mutation of the element is safe with respect to the hash table because the keys are "equal."
*/
if (table->user_on_key_destroy && element->key != key) {
table->user_on_key_destroy((void *)element->key);
}
/*
* Potentially a NOOP, but under certain circumstances (when the key and value are a part of the same structure
* and we're overwriting the existing entry, for example), this is necessary. Equality via function does not
* imply equal pointers.
*/
element->key = key;
}
node->value = p_value;
node->key = key;
node->table = table;
element->value = node;
aws_linked_list_push_back(&table->list, &node->node);
return AWS_OP_SUCCESS;
}
int aws_linked_hash_table_remove(struct aws_linked_hash_table *table, const void *key) {
/* allocated table memory and the linked list entry will be removed in the
* callback. */
return aws_hash_table_remove(&table->table, key, NULL, NULL);
}
void aws_linked_hash_table_clear(struct aws_linked_hash_table *table) {
/* clearing the table will remove all elements. That will also deallocate
* any entries we currently have. */
aws_hash_table_clear(&table->table);
}
size_t aws_linked_hash_table_get_element_count(const struct aws_linked_hash_table *table) {
return aws_hash_table_get_entry_count(&table->table);
}
void aws_linked_hash_table_move_node_to_end_of_list(
struct aws_linked_hash_table *table,
struct aws_linked_hash_table_node *node) {
aws_linked_list_remove(&node->node);
aws_linked_list_push_back(&table->list, &node->node);
}
const struct aws_linked_list *aws_linked_hash_table_get_iteration_list(const struct aws_linked_hash_table *table) {
return &table->list;
}
|