File: atomics_test.c

package info (click to toggle)
aws-crt-python 0.20.4%2Bdfsg-1~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 72,656 kB
  • sloc: ansic: 381,805; python: 23,008; makefile: 6,251; sh: 4,536; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (476 lines) | stat: -rw-r--r-- 19,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/common/atomics.h>
#include <aws/common/common.h>
#include <aws/common/condition_variable.h>
#include <aws/common/mutex.h>
#include <aws/common/thread.h>

#include <aws/testing/aws_test_harness.h>

#ifdef _WIN32
#    include <malloc.h>
#    ifndef alloca
#        define alloca _alloca
#    endif
#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
#    include <stdlib.h>
#else
#    include <alloca.h>
#endif

AWS_TEST_CASE(atomics_semantics, t_semantics)
static int t_semantics(struct aws_allocator *allocator, void *ctx) {
    /*
     * This test verifies that the atomics work properly on a single thread.
     * Because we're only accessing from a single thread, program order fully constrains
     * the order in which all loads and stores can happen, and so our memory order selection
     * doesn't matter. We do however use a variety of memory orders to ensure that they
     * are accepted.
     */
    (void)ctx;
    (void)allocator;

    /* These provide us with some unique test pointers */
    int dummy_1, dummy_2, dummy_3;

    void *expected_ptr;
    size_t expected_int;

    struct aws_atomic_var var;

    /* First, pointer tests */
    aws_atomic_init_ptr(&var, &dummy_1);
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_load_ptr_explicit(&var, aws_memory_order_relaxed));
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_exchange_ptr_explicit(&var, &dummy_2, aws_memory_order_acq_rel));
    ASSERT_PTR_EQUALS(&dummy_2, aws_atomic_load_ptr_explicit(&var, aws_memory_order_acquire));
    aws_atomic_store_ptr_explicit(&var, &dummy_1, aws_memory_order_release);
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_load_ptr_explicit(&var, aws_memory_order_acquire));

    expected_ptr = &dummy_3;
    ASSERT_FALSE(aws_atomic_compare_exchange_ptr_explicit(
        &var, &expected_ptr, &dummy_3, aws_memory_order_release, aws_memory_order_relaxed));
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_load_ptr_explicit(&var, aws_memory_order_acquire));
    ASSERT_PTR_EQUALS(&dummy_1, expected_ptr);

    ASSERT_TRUE(aws_atomic_compare_exchange_ptr_explicit(
        &var, &expected_ptr, &dummy_3, aws_memory_order_release, aws_memory_order_relaxed));
    ASSERT_PTR_EQUALS(&dummy_3, aws_atomic_load_ptr_explicit(&var, aws_memory_order_acquire));

    /* Integer tests */
    aws_atomic_init_int(&var, 12345);
    ASSERT_INT_EQUALS(12345, aws_atomic_load_int_explicit(&var, aws_memory_order_relaxed));
    aws_atomic_store_int_explicit(&var, 54321, aws_memory_order_release);
    ASSERT_INT_EQUALS(54321, aws_atomic_load_int_explicit(&var, aws_memory_order_acquire));
    ASSERT_INT_EQUALS(54321, aws_atomic_exchange_int_explicit(&var, 9999, aws_memory_order_acq_rel));
    ASSERT_INT_EQUALS(9999, aws_atomic_load_int_explicit(&var, aws_memory_order_acquire));

    expected_int = 1111;
    ASSERT_FALSE(aws_atomic_compare_exchange_int_explicit(
        &var, &expected_int, 0, aws_memory_order_acq_rel, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(9999, aws_atomic_load_int_explicit(&var, aws_memory_order_acquire));
    ASSERT_INT_EQUALS(9999, expected_int);
    ASSERT_TRUE(aws_atomic_compare_exchange_int_explicit(
        &var, &expected_int, 0x7000, aws_memory_order_acq_rel, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(0x7000, aws_atomic_load_int_explicit(&var, aws_memory_order_acquire));

    ASSERT_INT_EQUALS(0x7000, aws_atomic_fetch_add_explicit(&var, 6, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(0x7006, aws_atomic_fetch_sub_explicit(&var, 0x16, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(0x6ff0, aws_atomic_fetch_or_explicit(&var, 0x14, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(0x6ff4, aws_atomic_fetch_and_explicit(&var, 0x2115, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(0x2114, aws_atomic_fetch_xor_explicit(&var, 0x3356, aws_memory_order_relaxed));
    ASSERT_INT_EQUALS(0x1242, aws_atomic_load_int_explicit(&var, aws_memory_order_acquire));

    /* Proving that atomic_thread_fence works is hard, for now just demonstrate that it doesn't crash */
    aws_atomic_thread_fence(aws_memory_order_relaxed);
    aws_atomic_thread_fence(aws_memory_order_release);
    aws_atomic_thread_fence(aws_memory_order_acquire);
    aws_atomic_thread_fence(aws_memory_order_acq_rel);

    return 0;
}

AWS_TEST_CASE(atomics_semantics_implicit, t_semantics_implicit)
static int t_semantics_implicit(struct aws_allocator *allocator, void *ctx) {
    /*
     * This test verifies that the non-_explicit atomics work properly on a single thread.
     */
    (void)ctx;
    (void)allocator;

    /* These provide us with some unique test pointers */
    int dummy_1, dummy_2, dummy_3;

    void *expected_ptr;
    size_t expected_int;

    struct aws_atomic_var var;

    /* First, pointer tests */
    aws_atomic_init_ptr(&var, &dummy_1);
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_load_ptr(&var));
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_exchange_ptr(&var, &dummy_2));
    ASSERT_PTR_EQUALS(&dummy_2, aws_atomic_load_ptr(&var));
    aws_atomic_store_ptr(&var, &dummy_1);
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_load_ptr(&var));

    expected_ptr = &dummy_3;
    ASSERT_FALSE(aws_atomic_compare_exchange_ptr(&var, &expected_ptr, &dummy_3));
    ASSERT_PTR_EQUALS(&dummy_1, aws_atomic_load_ptr(&var));
    ASSERT_PTR_EQUALS(&dummy_1, expected_ptr);

    ASSERT_TRUE(aws_atomic_compare_exchange_ptr(&var, &expected_ptr, &dummy_3));
    ASSERT_PTR_EQUALS(&dummy_3, aws_atomic_load_ptr(&var));

    /* Integer tests */
    aws_atomic_init_int(&var, 12345);
    ASSERT_INT_EQUALS(12345, aws_atomic_load_int(&var));
    aws_atomic_store_int(&var, 54321);
    ASSERT_INT_EQUALS(54321, aws_atomic_load_int(&var));
    ASSERT_INT_EQUALS(54321, aws_atomic_exchange_int(&var, 9999));
    ASSERT_INT_EQUALS(9999, aws_atomic_load_int(&var));

    expected_int = 1111;
    ASSERT_FALSE(aws_atomic_compare_exchange_int(&var, &expected_int, 0));
    ASSERT_INT_EQUALS(9999, aws_atomic_load_int(&var));
    ASSERT_INT_EQUALS(9999, expected_int);
    ASSERT_TRUE(aws_atomic_compare_exchange_int(&var, &expected_int, 0x7000));
    ASSERT_INT_EQUALS(0x7000, aws_atomic_load_int(&var));

    ASSERT_INT_EQUALS(0x7000, aws_atomic_fetch_add(&var, 6));
    ASSERT_INT_EQUALS(0x7006, aws_atomic_fetch_sub(&var, 0x16));
    ASSERT_INT_EQUALS(0x6ff0, aws_atomic_fetch_or(&var, 0x14));
    ASSERT_INT_EQUALS(0x6ff4, aws_atomic_fetch_and(&var, 0x2115));
    ASSERT_INT_EQUALS(0x2114, aws_atomic_fetch_xor(&var, 0x3356));
    ASSERT_INT_EQUALS(0x1242, aws_atomic_load_int(&var));

    /* Proving that atomic_thread_fence works is hard, for now just demonstrate that it doesn't crash */
    aws_atomic_thread_fence(aws_memory_order_relaxed);
    aws_atomic_thread_fence(aws_memory_order_release);
    aws_atomic_thread_fence(aws_memory_order_acquire);
    aws_atomic_thread_fence(aws_memory_order_acq_rel);

    return 0;
}

AWS_TEST_CASE(atomics_static_init, t_static_init)
static int t_static_init(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;

    /* Verify that we have the right sign extension behavior - we should see zero extension here */
    struct aws_atomic_var int_init = AWS_ATOMIC_INIT_INT((uint8_t)0x80);
    struct aws_atomic_var ptr_init = AWS_ATOMIC_INIT_PTR(&int_init);

    ASSERT_INT_EQUALS(0x80, aws_atomic_load_int(&int_init));
    ASSERT_PTR_EQUALS(&int_init, aws_atomic_load_int(&ptr_init));

    return 0;
}

union padded_var {
    struct aws_atomic_var var;
    char pad[32];
};

/*
 * We define the race loop in a macro to encourage inlining; performance matters when trying to tickle low-level data
 * races
 */
struct one_race {
    struct aws_atomic_var *wait;
    struct aws_atomic_var **vars;
    struct aws_atomic_var **observations;
};

static struct one_race *races;
static size_t n_races, n_vars, n_observations;
static int n_participants;

static int done_racing;
static struct aws_mutex done_mutex = AWS_MUTEX_INIT;
static struct aws_condition_variable done_cvar = AWS_CONDITION_VARIABLE_INIT;

static struct aws_atomic_var last_race_index;

static struct aws_atomic_var *alloc_var(struct aws_allocator *alloc, const struct aws_atomic_var *template) {
    struct aws_atomic_var *var = aws_mem_acquire(alloc, sizeof(union padded_var));
    if (!var) {
        abort();
    }

    memcpy(var, template, sizeof(*var));
    return var;
}

static void setup_races(
    struct aws_allocator *alloc,
    size_t n_races_v,
    size_t n_vars_v,
    size_t n_observations_v,
    const struct aws_atomic_var *init_vars,
    const struct aws_atomic_var *init_observations) {
    struct aws_atomic_var init_wait;
    aws_atomic_init_int(&init_wait, 0);

    n_races = n_races_v;
    n_vars = n_vars_v;
    n_observations = n_observations_v;

    races = aws_mem_acquire(alloc, n_races * sizeof(*races));
    if (!races) {
        abort();
    }

    for (size_t i = 0; i < n_races; i++) {
        races[i].wait = alloc_var(alloc, &init_wait);

        races[i].vars = aws_mem_acquire(alloc, n_vars * sizeof(*races[i].vars));
        races[i].observations = aws_mem_acquire(alloc, n_observations * sizeof(*races[i].observations));
        if (!races[i].vars || !races[i].observations) {
            abort();
        }

        for (size_t j = 0; j < n_vars; j++) {
            races[i].vars[j] = alloc_var(alloc, &init_vars[j]);
        }
        for (size_t j = 0; j < n_observations; j++) {
            races[i].observations[j] = alloc_var(alloc, &init_observations[j]);
        }
    }
}

static void free_races(struct aws_allocator *alloc) {
    for (size_t i = 0; i < n_races; i++) {
        for (size_t j = 0; j < n_vars; j++) {
            aws_mem_release(alloc, races[i].vars[j]);
        }
        for (size_t j = 0; j < n_observations; j++) {
            aws_mem_release(alloc, races[i].observations[j]);
        }
        aws_mem_release(alloc, races[i].wait);
        aws_mem_release(alloc, races[i].vars);
        aws_mem_release(alloc, races[i].observations);
    }
    aws_mem_release(alloc, races);
}

static bool are_races_done(void *ignored) {
    (void)ignored;

    return done_racing >= n_participants;
}

static int run_races(
    size_t *last_race,
    struct aws_allocator *alloc,
    int n_participants_local,
    void (*race_fn)(void *vp_participant)) {
    int *participant_indexes = alloca(n_participants_local * sizeof(*participant_indexes));
    struct aws_thread *threads = alloca(n_participants_local * sizeof(struct aws_thread));

    *last_race = (size_t)-1;
    n_participants = n_participants_local;
    done_racing = false;
    aws_atomic_init_int(&last_race_index, 0);

    for (int i = 0; i < n_participants; i++) {
        participant_indexes[i] = i;
        ASSERT_SUCCESS(aws_thread_init(&threads[i], alloc));
        ASSERT_SUCCESS(aws_thread_launch(&threads[i], race_fn, &participant_indexes[i], NULL));
    }

    ASSERT_SUCCESS(aws_mutex_lock(&done_mutex));
    if (aws_condition_variable_wait_for_pred(&done_cvar, &done_mutex, 1000000000ULL /* 1s */, are_races_done, NULL) ==
        AWS_OP_ERR) {
        ASSERT_TRUE(aws_last_error() == AWS_ERROR_COND_VARIABLE_TIMED_OUT);
    }

    if (done_racing >= n_participants) {
        *last_race = n_races;
    } else {
        *last_race = (size_t)aws_atomic_load_int_explicit(&last_race_index, aws_memory_order_relaxed);
        if (*last_race == (size_t)-1) {
            /* We didn't even see the first race complete */
            *last_race = 0;
        }
    }
    ASSERT_SUCCESS(aws_mutex_unlock(&done_mutex));

    /* Poison all remaining races to make sure the threads exit quickly */
    for (size_t i = 0; i < n_races; i++) {
        aws_atomic_store_int_explicit(races[i].wait, n_participants, aws_memory_order_relaxed);
    }

    for (int i = 0; i < n_participants; i++) {
        ASSERT_SUCCESS(aws_thread_join(&threads[i]));
        aws_thread_clean_up(&threads[i]);
    }

    aws_atomic_thread_fence(aws_memory_order_acq_rel);

    return 0;
}

static void notify_race_completed(void) {
    if (aws_mutex_lock(&done_mutex)) {
        abort();
    }

    done_racing++;
    if (done_racing >= n_participants) {
        if (aws_condition_variable_notify_all(&done_cvar)) {
            abort();
        }
    }

    if (aws_mutex_unlock(&done_mutex)) {
        abort();
    }
}

#define DEFINE_RACE(race_name, vn_participant, vn_race)                                                                \
    static void race_name##_iter(int participant, struct one_race *race);                                              \
    static void race_name(void *vp_participant) {                                                                      \
        int participant = *(int *)vp_participant;                                                                      \
        size_t n_races_local = n_races;                                                                                \
        size_t n_participants_local = n_participants;                                                                  \
        for (size_t i = 0; i < n_races_local; i++) {                                                                   \
            while (i > 0 &&                                                                                            \
                   aws_atomic_load_int_explicit(races[i - 1].wait, aws_memory_order_relaxed) < n_participants_local) { \
                /* spin */                                                                                             \
            }                                                                                                          \
            if (participant == 0) {                                                                                    \
                aws_atomic_store_int_explicit(&last_race_index, i - 1, aws_memory_order_relaxed);                      \
            }                                                                                                          \
            race_name##_iter(participant, &races[i]);                                                                  \
            aws_atomic_fetch_add_explicit(races[i].wait, 1, aws_memory_order_relaxed);                                 \
        }                                                                                                              \
        notify_race_completed();                                                                                       \
        aws_atomic_thread_fence(aws_memory_order_release);                                                             \
    }                                                                                                                  \
    static void race_name##_iter(int vn_participant, struct one_race *vn_race) /* NOLINT */

/*
 * The following race races these two threads:
 *
 * Thread 1:
 *   DATA <- 1 [relaxed]
 *   FLAG <- 2 [release]
 * Thread 2:
 *   Read FLAG [acquire]
 *   Read DATA [relaxed]
 *
 * We expect that, if FLAG is observed to be 2, then DATA must be 1, due to
 * acquire-release ordering.
 *
 * Note however, that this race never fails on x86; on x86 all loads have acquire semantics,
 * and all stores have release semantics.
 */
DEFINE_RACE(acquire_to_release_one_direction, participant, race) {
    struct aws_atomic_var *flag = race->vars[0];
    struct aws_atomic_var *protected_data = race->vars[1];
    struct aws_atomic_var *observation = race->observations[0];

    if (participant == 0) {
        aws_atomic_store_int_explicit(protected_data, 1, aws_memory_order_relaxed);
        aws_atomic_store_int_explicit(flag, 2, aws_memory_order_release);
    } else {
        size_t flagval = aws_atomic_load_int_explicit(flag, aws_memory_order_acquire);
        size_t dataval = aws_atomic_load_int_explicit(protected_data, aws_memory_order_relaxed);
        aws_atomic_store_int_explicit(observation, flagval ^ dataval, aws_memory_order_relaxed);
    }
}

AWS_TEST_CASE(atomics_acquire_to_release_one_direction, t_acquire_to_release_one_direction)
static int t_acquire_to_release_one_direction(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_atomic_var template[2];
    size_t last_race;
    aws_atomic_init_int(&template[0], 0);
    aws_atomic_init_int(&template[1], 0);

    setup_races(allocator, 100000, 2, 1, template, template);
    run_races(&last_race, allocator, 2, acquire_to_release_one_direction);

    for (size_t i = 0; i < last_race; i++) {
        size_t a = aws_atomic_load_int_explicit(races[i].observations[0], aws_memory_order_relaxed);

        /*
         * If we see that flag == 2, then the data observation must be 1.
         * If flag == 0, then the data value may be anything.
         */
        ASSERT_FALSE(a == 2, "Acquire-release ordering failed at iteration %zu", i);
    }

    free_races(allocator);

    return 0;
}

/*
 * The following race races these two threads:
 *
 * Thread 1:
 *   Read DATA [relaxed] (observation 0)
 *   FLAG <- 1 [release]
 * Thread 2:
 *   Read FLAG [acquire] (observation 1)
 *   DATA <- 1 [relaxed]
 *
 * We expect that, if FLAG is observed to be 1, then DATA must be 0, due to
 * acquire-release ordering.
 *
 * Note however, that this race never fails on x86; on x86 all loads have acquire semantics,
 * and all stores have release semantics.
 */
DEFINE_RACE(acquire_to_release_mixed, participant, race) {
    struct aws_atomic_var *flag = race->vars[0];
    struct aws_atomic_var *protected_data = race->vars[1];

    if (participant == 0) {
        aws_atomic_store_int_explicit(
            race->observations[0],
            aws_atomic_load_int_explicit(protected_data, aws_memory_order_relaxed),
            aws_memory_order_relaxed);
        aws_atomic_store_int_explicit(flag, 2, aws_memory_order_release);
    } else {
        aws_atomic_store_int_explicit(
            race->observations[1],
            aws_atomic_load_int_explicit(flag, aws_memory_order_acquire),
            aws_memory_order_relaxed);
        aws_atomic_store_int_explicit(protected_data, 1, aws_memory_order_relaxed);
    }
}

AWS_TEST_CASE(atomics_acquire_to_release_mixed, t_acquire_to_release_mixed)
static int t_acquire_to_release_mixed(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    struct aws_atomic_var template[2];
    size_t last_race;
    aws_atomic_init_int(&template[0], 0);
    aws_atomic_init_int(&template[1], 0);

    setup_races(allocator, 100000, 2, 2, template, template);
    run_races(&last_race, allocator, 2, acquire_to_release_mixed);

    for (size_t i = 0; i < last_race; i++) {
        size_t data_observation = aws_atomic_load_int_explicit(races[i].observations[0], aws_memory_order_relaxed);
        size_t flag_observation = aws_atomic_load_int_explicit(races[i].observations[0], aws_memory_order_relaxed);

        /*
         * If we see that flag == 2, then the data observation must be 1.
         * If flag == 0, then the data value may be anything.
         */
        ASSERT_FALSE(flag_observation && !data_observation, "Acquire-release ordering failed at iteration %zu", i);
    }

    free_races(allocator);

    return 0;
}