File: device_random_test.c

package info (click to toggle)
aws-crt-python 0.20.4%2Bdfsg-1~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 72,656 kB
  • sloc: ansic: 381,805; python: 23,008; makefile: 6,251; sh: 4,536; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (176 lines) | stat: -rw-r--r-- 6,652 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */
#include <aws/common/device_random.h>

#include <aws/common/byte_buf.h>

#include <aws/testing/aws_test_harness.h>

#include <math.h>

/* Number of random numbers to generate and put in buckets. Higher numbers mean more tolerance */
#define DISTRIBUTION_PUT_COUNT 1000000

/* Must be a power of 2. Lower numbers mean more tolerance. */
#define DISTRIBUTION_BUCKET_COUNT 16

/* Fail if a bucket's contents vary from expected by more than this ratio. Higher ratio means more tolerance.
 * For example, if putting 1000 numbers into 10 buckets, we expect 100 in each bucket.
 * If ratio is 0.25 than accept 75 -> 125 numbers per bucket. */
#define DISTRIBUTION_ACCEPTED_DEVIATION_RATIO 0.05

/* For testing that random number generator has a uniform distribution.
 * They're RANDOM numbers, so to avoid RANDOM failures use lots of inputs and be tolerate some deviance */
struct distribution_tester {
    uint64_t max_value;
    uint64_t buckets[DISTRIBUTION_BUCKET_COUNT];
    uint64_t num_puts;
};

static int s_distribution_tester_put(struct distribution_tester *tester, uint64_t rand_num) {
    ASSERT_TRUE(rand_num <= tester->max_value);
    uint64_t bucket_size = (tester->max_value / DISTRIBUTION_BUCKET_COUNT) + 1;
    uint64_t bucket_idx = rand_num / bucket_size;
    ASSERT_TRUE(bucket_idx < DISTRIBUTION_BUCKET_COUNT);
    tester->buckets[bucket_idx]++;
    tester->num_puts++;
    return AWS_OP_SUCCESS;
}

static int s_distribution_tester_check_results(const struct distribution_tester *tester) {
    ASSERT_TRUE(tester->num_puts == DISTRIBUTION_PUT_COUNT);

    double expected_numbers_per_bucket = (double)DISTRIBUTION_PUT_COUNT / DISTRIBUTION_BUCKET_COUNT;

    uint64_t max_acceptable_numbers_per_bucket =
        (uint64_t)ceil(expected_numbers_per_bucket * (1.0 + DISTRIBUTION_ACCEPTED_DEVIATION_RATIO));

    uint64_t min_acceptable_numbers_per_bucket =
        (uint64_t)floor(expected_numbers_per_bucket * (1.0 - DISTRIBUTION_ACCEPTED_DEVIATION_RATIO));

    for (uint64_t i = 0; i < DISTRIBUTION_BUCKET_COUNT; ++i) {
        uint64_t numbers_in_bucket = tester->buckets[i];
        ASSERT_TRUE(numbers_in_bucket <= max_acceptable_numbers_per_bucket);
        ASSERT_TRUE(numbers_in_bucket >= min_acceptable_numbers_per_bucket);
    }

    return AWS_OP_SUCCESS;
}

static int s_device_rand_u64_distribution_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;
    struct distribution_tester tester = {.max_value = UINT64_MAX};

    for (size_t i = 0; i < DISTRIBUTION_PUT_COUNT; ++i) {
        uint64_t next_value = 0;
        ASSERT_SUCCESS(aws_device_random_u64(&next_value));
        ASSERT_SUCCESS(s_distribution_tester_put(&tester, next_value));
    }

    ASSERT_SUCCESS(s_distribution_tester_check_results(&tester));
    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(device_rand_u64_distribution, s_device_rand_u64_distribution_fn)

static int s_device_rand_u32_distribution_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;
    struct distribution_tester tester = {.max_value = UINT32_MAX};

    for (size_t i = 0; i < DISTRIBUTION_PUT_COUNT; ++i) {
        uint32_t next_value = 0;
        ASSERT_SUCCESS(aws_device_random_u32(&next_value));
        ASSERT_SUCCESS(s_distribution_tester_put(&tester, next_value));
    }

    ASSERT_SUCCESS(s_distribution_tester_check_results(&tester));
    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(device_rand_u32_distribution, s_device_rand_u32_distribution_fn)

static int s_device_rand_u16_distribution_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;
    struct distribution_tester tester = {.max_value = UINT16_MAX};

    for (size_t i = 0; i < DISTRIBUTION_PUT_COUNT; ++i) {
        uint16_t next_value = 0;
        ASSERT_SUCCESS(aws_device_random_u16(&next_value));
        ASSERT_SUCCESS(s_distribution_tester_put(&tester, next_value));
    }

    ASSERT_SUCCESS(s_distribution_tester_check_results(&tester));
    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(device_rand_u16_distribution, s_device_rand_u16_distribution_fn)

static int s_device_rand_buffer_distribution_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;

    uint8_t array[DISTRIBUTION_PUT_COUNT] = {0};
    struct aws_byte_buf buf = aws_byte_buf_from_empty_array(array, sizeof(array));
    ASSERT_SUCCESS(aws_device_random_buffer(&buf));

    /* Test each byte in the buffer */
    struct distribution_tester tester = {.max_value = UINT8_MAX};

    for (size_t i = 0; i < DISTRIBUTION_PUT_COUNT; ++i) {
        ASSERT_SUCCESS(s_distribution_tester_put(&tester, array[i]));
    }

    ASSERT_SUCCESS(s_distribution_tester_check_results(&tester));
    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(device_rand_buffer_distribution, s_device_rand_buffer_distribution_fn)

static int s_device_rand_buffer_append_distribution_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;

    /* Create array full of zeroes, but only partially fill it with randomness */
    uint8_t array[DISTRIBUTION_PUT_COUNT + 100] = {0};
    struct aws_byte_buf buf = aws_byte_buf_from_empty_array(array, sizeof(array));
    ASSERT_SUCCESS(aws_device_random_buffer_append(&buf, DISTRIBUTION_PUT_COUNT));

    /* Test that first half of buffer has randomness */
    struct distribution_tester tester = {.max_value = UINT8_MAX};

    for (size_t i = 0; i < DISTRIBUTION_PUT_COUNT; ++i) {
        ASSERT_SUCCESS(s_distribution_tester_put(&tester, array[i]));
    }

    ASSERT_SUCCESS(s_distribution_tester_check_results(&tester));

    /* Test that second half of buffer is untouched (still full of zeroes) */
    ASSERT_UINT_EQUALS(DISTRIBUTION_PUT_COUNT, buf.len);
    ASSERT_UINT_EQUALS(sizeof(array), buf.capacity);
    for (size_t i = buf.len; i < buf.capacity; ++i) {
        ASSERT_UINT_EQUALS(0, buf.buffer[i]);
    }

    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(device_rand_buffer_append_distribution, s_device_rand_buffer_append_distribution_fn)

static int s_device_rand_buffer_append_short_buffer_fn(struct aws_allocator *allocator, void *ctx) {
    (void)allocator;
    (void)ctx;

    uint8_t array[200] = {0};
    struct aws_byte_buf buf = aws_byte_buf_from_empty_array(array, sizeof(array));
    ASSERT_ERROR(AWS_ERROR_SHORT_BUFFER, aws_device_random_buffer_append(&buf, sizeof(array) + 1));
    ASSERT_UINT_EQUALS(0, buf.len);

    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(device_rand_buffer_append_short_buffer, s_device_rand_buffer_append_short_buffer_fn)