1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/hash_table.h>
#include <aws/common/clock.h>
#include <aws/common/string.h>
#include <aws/testing/aws_test_harness.h>
#include <stdio.h>
static const char *TEST_STR_1 = "test 1";
static const char *TEST_STR_2 = "test 2";
static const char *TEST_VAL_STR_1 = "value 1";
static const char *TEST_VAL_STR_2 = "value 2";
#define ASSERT_HASH_TABLE_ENTRY_COUNT(map, count) \
ASSERT_UINT_EQUALS(count, aws_hash_table_get_entry_count(map), "Hash map should have %d entries", count)
#define ASSERT_NO_KEY(hash_table, key) \
do { \
AWS_STATIC_STRING_FROM_LITERAL(assert_key, key); \
struct aws_hash_element *pElem_assert; \
ASSERT_SUCCESS(aws_hash_table_find((hash_table), (void *)assert_key, &pElem_assert)); \
ASSERT_NULL(pElem_assert, "Expected key to not be present: " key); \
} while (0)
#define ASSERT_KEY_VALUE(hash_table, key, expected) \
do { \
AWS_STATIC_STRING_FROM_LITERAL(assert_key, key); \
AWS_STATIC_STRING_FROM_LITERAL(assert_value, expected); \
struct aws_hash_element *pElem_assert; \
ASSERT_SUCCESS(aws_hash_table_find((hash_table), (void *)assert_key, &pElem_assert)); \
ASSERT_NOT_NULL(pElem_assert, "Expected key to be present: " key); \
ASSERT_TRUE( \
aws_string_eq(assert_value, (const struct aws_string *)pElem_assert->value), \
"Expected key \"" key "\" to have value \"" expected "\"; actually had value \"%s\"", \
aws_string_bytes((const struct aws_string *)pElem_assert->value)); \
} while (0)
AWS_TEST_CASE(test_hash_table_create_find, s_test_hash_table_create_find_fn)
static int s_test_hash_table_create_find_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
int err_code =
aws_hash_table_init(&hash_table, allocator, 10, aws_hash_c_string, aws_hash_callback_c_str_eq, NULL, NULL);
struct aws_hash_element *pElem;
int was_created;
ASSERT_SUCCESS(err_code, "Hash Map init should have succeeded.");
ASSERT_HASH_TABLE_ENTRY_COUNT(&hash_table, 0);
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, &pElem, &was_created);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(1, was_created, "Hash Map put should have created a new element.");
pElem->value = (void *)TEST_VAL_STR_1;
ASSERT_HASH_TABLE_ENTRY_COUNT(&hash_table, 1);
/* Try passing a NULL was_created this time */
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_2, &pElem, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
pElem->value = (void *)TEST_VAL_STR_2;
ASSERT_HASH_TABLE_ENTRY_COUNT(&hash_table, 2);
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_1, &pElem);
ASSERT_SUCCESS(err_code, "Hash Map get should have succeeded.");
ASSERT_STR_EQUALS(
TEST_VAL_STR_1,
(const char *)pElem->value,
"Returned value for %s, should have been %s",
TEST_STR_1,
TEST_VAL_STR_1);
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_2, &pElem);
ASSERT_SUCCESS(err_code, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
TEST_VAL_STR_2,
strlen(TEST_VAL_STR_2) + 1,
(const char *)pElem->value,
strlen(pElem->value) + 1,
"Returned value for %s, should have been %s",
TEST_STR_2,
TEST_VAL_STR_2);
ASSERT_HASH_TABLE_ENTRY_COUNT(&hash_table, 2);
err_code = aws_hash_table_remove_element(&hash_table, pElem);
ASSERT_SUCCESS(err_code, "Hash Map remove element should have succeeded.");
ASSERT_HASH_TABLE_ENTRY_COUNT(&hash_table, 1);
aws_hash_table_clean_up(&hash_table);
return 0;
}
AWS_TEST_CASE(test_hash_table_string_create_find, s_test_hash_table_string_create_find_fn)
static int s_test_hash_table_string_create_find_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
struct aws_hash_element *pElem;
int was_created;
int ret = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_string,
aws_hash_callback_string_eq,
aws_hash_callback_string_destroy,
aws_hash_callback_string_destroy);
ASSERT_SUCCESS(ret, "Hash Map init should have succeeded.");
/* First element of hash, both key and value are statically allocated strings */
AWS_STATIC_STRING_FROM_LITERAL(key_1, "tweedle dee");
AWS_STATIC_STRING_FROM_LITERAL(val_1, "tweedle dum");
/* Second element of hash, only value is dynamically allocated string */
AWS_STATIC_STRING_FROM_LITERAL(key_2, "what's for dinner?");
const struct aws_string *val_2 = aws_string_new_from_c_str(allocator, "deadbeef");
/* Third element of hash, only key is dynamically allocated string */
uint8_t bytes[] = {0x88, 0x00, 0xaa, 0x13, 0xb7, 0x93, 0x7f, 0xdd, 0xbb, 0x62};
const struct aws_string *key_3 = aws_string_new_from_array(allocator, bytes, 10);
AWS_STATIC_STRING_FROM_LITERAL(val_3, "hunter2");
ret = aws_hash_table_create(&hash_table, (void *)key_1, &pElem, &was_created);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(1, was_created, "Hash Map put should have created a new element.");
pElem->value = (void *)val_1;
/* Try passing a NULL was_created this time */
ret = aws_hash_table_create(&hash_table, (void *)key_2, &pElem, NULL);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
pElem->value = (void *)val_2;
ret = aws_hash_table_create(&hash_table, (void *)key_3, &pElem, NULL);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
pElem->value = (void *)val_3;
ret = aws_hash_table_find(&hash_table, (void *)key_1, &pElem);
ASSERT_SUCCESS(ret, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
"tweedle dee",
strlen("tweedle dee"),
aws_string_bytes(pElem->key),
((struct aws_string *)pElem->key)->len,
"Returned key for %s, should have been %s",
"tweedle dee",
"tweedle dee");
ASSERT_BIN_ARRAYS_EQUALS(
"tweedle dum",
strlen("tweedle dum"),
aws_string_bytes(pElem->value),
((struct aws_string *)pElem->value)->len,
"Returned value for %s, should have been %s",
"tweedle dee",
"tweedle dum");
ret = aws_hash_table_find(&hash_table, (void *)key_2, &pElem);
ASSERT_SUCCESS(ret, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
"what's for dinner?",
strlen("what's for dinner?"),
aws_string_bytes(pElem->key),
((struct aws_string *)pElem->key)->len,
"Returned key for %s, should have been %s",
"what's for dinner?",
"what's for dinner?");
ASSERT_BIN_ARRAYS_EQUALS(
"deadbeef",
strlen("deadbeef"),
aws_string_bytes(pElem->value),
((struct aws_string *)pElem->value)->len,
"Returned value for %s, should have been %s",
"what's for dinner?",
"deadbeef");
ret = aws_hash_table_find(&hash_table, (void *)key_3, &pElem);
ASSERT_SUCCESS(ret, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
bytes,
10,
aws_string_bytes(pElem->key),
((struct aws_string *)pElem->key)->len,
"Returned key for %02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx should have been same",
bytes[0],
bytes[1],
bytes[2],
bytes[3],
bytes[4],
bytes[5],
bytes[6],
bytes[7],
bytes[8],
bytes[9]);
ASSERT_BIN_ARRAYS_EQUALS(
"hunter2",
strlen("hunter2"),
aws_string_bytes(pElem->value),
((struct aws_string *)pElem->value)->len,
"Returned value for binary bytes should have been %s",
"hunter2");
aws_string_destroy((struct aws_string *)pElem->key);
aws_string_destroy(pElem->value);
ret = aws_hash_table_remove_element(&hash_table, pElem);
ASSERT_SUCCESS(ret, "Hash Map remove element should have succeeded.");
ASSERT_HASH_TABLE_ENTRY_COUNT(&hash_table, 2);
aws_hash_table_clean_up(&hash_table);
return 0;
}
static const void *last_key, *last_value;
static void destroy_key_record(void *key) {
last_key = key;
}
static void destroy_value_record(void *value) {
last_value = value;
}
AWS_TEST_CASE(test_hash_table_put, s_test_hash_table_put_fn)
static int s_test_hash_table_put_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
struct aws_hash_element *pElem;
int was_created;
int ret = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_string,
aws_hash_callback_string_eq,
destroy_key_record,
destroy_value_record);
ASSERT_SUCCESS(ret, "Hash Map init should have succeeded.");
AWS_STATIC_STRING_FROM_LITERAL(sentinel, "");
AWS_STATIC_STRING_FROM_LITERAL(key_a_1, "a");
AWS_STATIC_STRING_FROM_LITERAL(value_b_1, "b");
ASSERT_NO_KEY(&hash_table, "a");
last_key = last_value = sentinel;
aws_hash_table_put(&hash_table, key_a_1, (void *)value_b_1, &was_created);
ASSERT_INT_EQUALS(was_created, 1);
ASSERT_KEY_VALUE(&hash_table, "a", "b");
/* dtors were not called, even with nulls */
ASSERT_PTR_EQUALS(last_key, sentinel);
ASSERT_PTR_EQUALS(last_value, sentinel);
AWS_STATIC_STRING_FROM_LITERAL(key_a_2, "a");
AWS_STATIC_STRING_FROM_LITERAL(value_c_1, "c");
last_key = last_value = NULL;
aws_hash_table_put(&hash_table, key_a_2, (void *)value_c_1, &was_created);
ASSERT_INT_EQUALS(was_created, 0);
ASSERT_KEY_VALUE(&hash_table, "a", "c");
ASSERT_SUCCESS(aws_hash_table_find(&hash_table, (void *)key_a_1, &pElem));
ASSERT_PTR_EQUALS(key_a_2, pElem->key);
/* verify dtor was called on the old key ptr */
ASSERT_PTR_EQUALS(last_key, key_a_1);
ASSERT_PTR_EQUALS(last_value, value_b_1);
last_key = last_value = NULL;
aws_hash_table_put(&hash_table, key_a_2, (void *)value_b_1, NULL);
ASSERT_KEY_VALUE(&hash_table, "a", "b");
/* Since the key ptr did not change, it was not destroyed */
ASSERT_PTR_EQUALS(last_key, NULL);
/* The value was destroyed however */
ASSERT_PTR_EQUALS(last_value, value_c_1);
aws_hash_table_clean_up(&hash_table);
return 0;
}
AWS_TEST_CASE(test_hash_table_put_null_dtor, s_test_hash_table_put_null_dtor_fn)
static int s_test_hash_table_put_null_dtor_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
int ret = aws_hash_table_init(&hash_table, allocator, 10, aws_hash_string, aws_hash_callback_string_eq, NULL, NULL);
ASSERT_SUCCESS(ret, "Hash Map init should have succeeded.");
AWS_STATIC_STRING_FROM_LITERAL(foo, "foo");
ASSERT_SUCCESS(aws_hash_table_put(&hash_table, foo, (void *)foo, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&hash_table, foo, (void *)foo, NULL));
aws_hash_table_clean_up(&hash_table);
return 0;
}
AWS_TEST_CASE(test_hash_table_swap_move, s_test_hash_table_swap_move)
static int s_test_hash_table_swap_move(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
AWS_STATIC_STRING_FROM_LITERAL(foo, "foo");
AWS_STATIC_STRING_FROM_LITERAL(bar, "bar");
AWS_STATIC_STRING_FROM_LITERAL(key, "key");
struct aws_hash_table table1, table2, tmp;
ASSERT_SUCCESS(
aws_hash_table_init(&table1, allocator, 10, aws_hash_string, aws_hash_callback_string_eq, NULL, NULL));
ASSERT_SUCCESS(
aws_hash_table_init(&table2, allocator, 10, aws_hash_string, aws_hash_callback_string_eq, NULL, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&table1, key, (void *)foo, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&table2, key, (void *)bar, NULL));
aws_hash_table_swap(&table1, &table2);
ASSERT_KEY_VALUE(&table1, "key", "bar");
ASSERT_KEY_VALUE(&table2, "key", "foo");
aws_hash_table_clean_up(&table2);
ASSERT_KEY_VALUE(&table1, "key", "bar");
/* Swap is safe with freed/uninitialized tables */
aws_hash_table_swap(&table1, &table2);
ASSERT_KEY_VALUE(&table2, "key", "bar");
memset(&table1, 0xDD, sizeof(table1));
aws_hash_table_swap(&table1, &table2);
ASSERT_KEY_VALUE(&table1, "key", "bar");
/* Move is safe with freed/uninitialized destination */
aws_hash_table_move(&table2, &table1);
ASSERT_KEY_VALUE(&table2, "key", "bar");
/* After move, source can be cleaned up as a no-op */
memcpy(&tmp, &table1, sizeof(table1));
aws_hash_table_clean_up(&table1);
ASSERT_INT_EQUALS(0, memcmp(&tmp, &table1, sizeof(table1)));
aws_hash_table_clean_up(&table2);
return 0;
}
AWS_TEST_CASE(test_hash_table_string_clean_up, s_test_hash_table_string_clean_up_fn)
static int s_test_hash_table_string_clean_up_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
/* Verify that clean up happens properly when a destructor function is used only on keys or only on values. */
struct aws_hash_table hash_table;
struct aws_hash_element *pElem;
int was_created;
const struct aws_string *key_1 = aws_string_new_from_c_str(allocator, "Once upon a midnight dreary,");
AWS_STATIC_STRING_FROM_LITERAL(val_1, "while I pondered, weak and weary,");
const struct aws_string *key_2 = aws_string_new_from_c_str(allocator, "Over many a quaint and curious");
AWS_STATIC_STRING_FROM_LITERAL(val_2, "volume of forgotten lore--");
const struct aws_string *key_3 = aws_string_new_from_c_str(allocator, "While I nodded, nearly napping,");
AWS_STATIC_STRING_FROM_LITERAL(val_3, "suddenly there came a tapping,");
const struct aws_string *dyn_keys[] = {key_1, key_2, key_3};
const struct aws_string *static_vals[] = {val_1, val_2, val_3};
int ret = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_string,
aws_hash_callback_string_eq,
aws_hash_callback_string_destroy,
NULL); /* destroy keys not values */
ASSERT_SUCCESS(ret, "Hash Map init should have succeeded.");
for (int idx = 0; idx < 3; ++idx) {
ret = aws_hash_table_create(&hash_table, (void *)dyn_keys[idx], &pElem, &was_created);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(1, was_created, "Hash Map put should have created a new element.");
pElem->value = (void *)static_vals[idx];
}
aws_hash_table_clean_up(&hash_table);
AWS_STATIC_STRING_FROM_LITERAL(key_4, "As of some one gently rapping,");
const struct aws_string *val_4 = aws_string_new_from_c_str(allocator, "rapping at my chamber door.");
AWS_STATIC_STRING_FROM_LITERAL(key_5, "\"'Tis some visitor,\" I muttered,");
const struct aws_string *val_5 = aws_string_new_from_c_str(allocator, "\"tapping at my chamber door--");
AWS_STATIC_STRING_FROM_LITERAL(key_6, "Only this and nothing more.\"");
const struct aws_string *val_6 = aws_string_new_from_c_str(allocator, "from The Raven by Edgar Allan Poe (1845)");
const struct aws_string *static_keys[] = {key_4, key_5, key_6};
const struct aws_string *dyn_vals[] = {val_4, val_5, val_6};
ret = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_string,
aws_hash_callback_string_eq,
NULL,
aws_hash_callback_string_destroy); /* destroy values not keys */
ASSERT_SUCCESS(ret, "Hash Map init should have succeeded.");
for (int idx = 0; idx < 3; ++idx) {
ret = aws_hash_table_create(&hash_table, (void *)static_keys[idx], &pElem, &was_created);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(1, was_created, "Hash Map put should have created a new element.");
pElem->value = (void *)dyn_vals[idx];
}
aws_hash_table_clean_up(&hash_table);
return 0;
}
static uint64_t hash_collide(const void *a) {
(void)a;
return 4;
}
AWS_TEST_CASE(test_hash_table_hash_collision, s_test_hash_table_hash_collision_fn)
static int s_test_hash_table_hash_collision_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
struct aws_hash_element *pElem;
int err_code =
aws_hash_table_init(&hash_table, allocator, 10, hash_collide, aws_hash_callback_c_str_eq, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map init should have succeeded.");
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, &pElem, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
pElem->value = (void *)TEST_VAL_STR_1;
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_2, &pElem, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
pElem->value = (void *)TEST_VAL_STR_2;
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_1, &pElem);
ASSERT_SUCCESS(err_code, "Hash Map get should have succeeded.");
ASSERT_STR_EQUALS(
TEST_VAL_STR_1, pElem->value, "Returned value for %s, should have been %s", TEST_STR_1, TEST_VAL_STR_1);
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_2, &pElem);
ASSERT_SUCCESS(err_code, "Hash Map get should have succeeded.");
ASSERT_STR_EQUALS(
TEST_VAL_STR_2, pElem->value, "Returned value for %s, should have been %s", TEST_STR_2, TEST_VAL_STR_2);
aws_hash_table_clean_up(&hash_table);
return 0;
}
AWS_TEST_CASE(test_hash_table_hash_overwrite, s_test_hash_table_hash_overwrite_fn)
static int s_test_hash_table_hash_overwrite_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
struct aws_hash_element *pElem;
int err_code =
aws_hash_table_init(&hash_table, allocator, 10, aws_hash_c_string, aws_hash_callback_c_str_eq, NULL, NULL);
int was_created = 42;
ASSERT_SUCCESS(err_code, "Hash Map init should have succeeded.");
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, &pElem, &was_created); //(void *)TEST_VAL_STR_1);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(1, was_created, "Hash Map create should have created a new element.");
pElem->value = (void *)TEST_VAL_STR_1;
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, &pElem, &was_created);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(0, was_created, "Hash Map create should not have created a new element.");
ASSERT_PTR_EQUALS(TEST_VAL_STR_1, pElem->value, "Create should have returned the old value.");
pElem->value = (void *)TEST_VAL_STR_2;
pElem = NULL;
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_1, &pElem);
ASSERT_SUCCESS(err_code, "Hash Map get should have succeeded.");
ASSERT_PTR_EQUALS(TEST_VAL_STR_2, pElem->value, "The new value should have been preserved on get");
aws_hash_table_clean_up(&hash_table);
return 0;
}
static void *s_last_removed_key;
static void *s_last_removed_value;
static int s_key_removal_counter = 0;
static int s_value_removal_counter = 0;
static void s_destroy_key_fn(void *key) {
s_last_removed_key = key;
++s_key_removal_counter;
}
static void s_destroy_value_fn(void *value) {
s_last_removed_value = value;
++s_value_removal_counter;
}
static void s_reset_destroy_ck(void) {
s_key_removal_counter = 0;
s_value_removal_counter = 0;
s_last_removed_key = NULL;
s_last_removed_value = NULL;
}
AWS_TEST_CASE(test_hash_table_hash_remove, s_test_hash_table_hash_remove_fn)
static int s_test_hash_table_hash_remove_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
struct aws_hash_element *pElem, elem;
int err_code = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_c_string,
aws_hash_callback_c_str_eq,
s_destroy_key_fn,
s_destroy_value_fn);
int was_present = 42;
s_reset_destroy_ck();
ASSERT_SUCCESS(err_code, "Hash Map init should have succeeded.");
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_2, &pElem, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
pElem->value = (void *)TEST_VAL_STR_2;
/* Create a second time; this should not invoke destroy */
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_2, &pElem, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(0, s_key_removal_counter, "No keys should be destroyed at this point");
ASSERT_INT_EQUALS(0, s_value_removal_counter, "No values should be destroyed at this point");
err_code = aws_hash_table_remove(&hash_table, (void *)TEST_STR_1, &elem, &was_present);
ASSERT_SUCCESS(err_code, "Hash Map remove should have succeeded.");
ASSERT_INT_EQUALS(0, s_key_removal_counter, "No keys should be destroyed at this point");
ASSERT_INT_EQUALS(0, s_value_removal_counter, "No values should be destroyed at this point");
ASSERT_INT_EQUALS(1, was_present, "Item should have been removed");
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_1, &pElem);
ASSERT_SUCCESS(err_code, "Find for nonexistent item should still succeed");
ASSERT_NULL(pElem, "Expected item to be nonexistent");
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_2, &pElem);
ASSERT_SUCCESS(err_code, "Hash Map get should have succeeded.");
ASSERT_PTR_EQUALS(TEST_VAL_STR_2, pElem->value, "Wrong value returned from second get");
/* If we delete and discard the element, destroy_fn should be invoked */
err_code = aws_hash_table_remove(&hash_table, (void *)TEST_STR_2, NULL, NULL);
ASSERT_SUCCESS(err_code, "Remove should have succeeded.");
ASSERT_INT_EQUALS(1, s_key_removal_counter, "One key should be destroyed at this point");
ASSERT_INT_EQUALS(1, s_value_removal_counter, "One value should be destroyed at this point");
ASSERT_PTR_EQUALS(s_last_removed_value, TEST_VAL_STR_2, "Wrong element destroyed");
/* If we delete an element that's not there, we shouldn't invoke destroy_fn */
err_code = aws_hash_table_remove(&hash_table, (void *)TEST_STR_1, NULL, &was_present);
ASSERT_SUCCESS(err_code, "Remove still should succeed on nonexistent items");
ASSERT_INT_EQUALS(0, was_present, "Remove should indicate item not present");
ASSERT_INT_EQUALS(1, s_key_removal_counter, "We shouldn't delete an item if none was found");
ASSERT_INT_EQUALS(1, s_value_removal_counter, "We shouldn't delete an item if none was found");
aws_hash_table_clean_up(&hash_table);
return 0;
}
AWS_TEST_CASE(test_hash_table_hash_clear_allows_cleanup, s_test_hash_table_hash_clear_allows_cleanup_fn)
static int s_test_hash_table_hash_clear_allows_cleanup_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
int err_code = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_c_string,
aws_hash_callback_c_str_eq,
s_destroy_key_fn,
s_destroy_value_fn);
ASSERT_SUCCESS(err_code, "Hash Map init should have succeeded.");
s_reset_destroy_ck();
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_2, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(2, aws_hash_table_get_entry_count(&hash_table));
aws_hash_table_clear(&hash_table);
ASSERT_INT_EQUALS(2, s_key_removal_counter, "Clear should destroy all keys");
ASSERT_INT_EQUALS(2, s_value_removal_counter, "Clear should destroy all values");
ASSERT_INT_EQUALS(0, aws_hash_table_get_entry_count(&hash_table));
struct aws_hash_element *pElem;
err_code = aws_hash_table_find(&hash_table, (void *)TEST_STR_1, &pElem);
ASSERT_SUCCESS(err_code, "Find should still succeed after clear");
ASSERT_NULL(pElem, "Element should not be found");
s_reset_destroy_ck();
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_1, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
err_code = aws_hash_table_create(&hash_table, (void *)TEST_STR_2, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map put should have succeeded.");
aws_hash_table_clean_up(&hash_table);
ASSERT_INT_EQUALS(2, s_key_removal_counter, "Cleanup should destroy all keys");
ASSERT_INT_EQUALS(2, s_value_removal_counter, "Cleanup should destroy all values");
return 0;
}
AWS_TEST_CASE(test_hash_table_on_resize_returns_correct_entry, s_test_hash_table_on_resize_returns_correct_entry_fn)
static int s_test_hash_table_on_resize_returns_correct_entry_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
int err_code = aws_hash_table_init(&hash_table, allocator, 10, aws_hash_ptr, aws_ptr_eq, NULL, NULL);
ASSERT_SUCCESS(err_code, "Hash Map init should have succeeded.");
for (int i = 0; i < 20; i++) {
struct aws_hash_element *pElem;
int was_created;
err_code = aws_hash_table_create(&hash_table, (void *)(intptr_t)i, &pElem, &was_created);
ASSERT_SUCCESS(err_code, "Create should have succeeded");
ASSERT_INT_EQUALS(1, was_created, "Create should have created new element");
ASSERT_PTR_EQUALS(NULL, pElem->value, "New element should have null value");
pElem->value = &hash_table;
}
aws_hash_table_clean_up(&hash_table);
return 0;
}
static int s_foreach_cb_tomask(void *context, struct aws_hash_element *p_element) {
int *p_mask = context;
uintptr_t index = (uintptr_t)p_element->key;
*p_mask |= (1 << index);
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
static int s_foreach_cb_error_and_delete(void *context, struct aws_hash_element *p_element) {
(void)context;
(void)p_element;
return AWS_COMMON_HASH_TABLE_ITER_ERROR | AWS_COMMON_HASH_TABLE_ITER_DELETE;
}
static int s_iter_count = 0;
static int s_foreach_cb_deltarget(void *context, struct aws_hash_element *p_element) {
void **pTarget = context;
int rv = AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
if (p_element->key == *pTarget) {
rv |= AWS_COMMON_HASH_TABLE_ITER_DELETE;
}
s_iter_count++;
return rv;
}
static int s_foreach_cb_cutoff(void *context, struct aws_hash_element *p_element) {
(void)p_element;
int *p_remain = context;
s_iter_count++;
if (--*p_remain) {
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
return 0;
}
static int s_foreach_cb_cutoff_del(void *context, struct aws_hash_element *p_element) {
int *p_remain = context;
s_iter_count++;
if (--*p_remain) {
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
*p_remain = (int)(intptr_t)p_element->key;
return AWS_COMMON_HASH_TABLE_ITER_DELETE;
}
AWS_TEST_CASE(test_hash_table_foreach, s_test_hash_table_foreach_fn)
static int s_test_hash_table_foreach_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
ASSERT_SUCCESS(
aws_hash_table_init(&hash_table, allocator, 10, aws_hash_ptr, aws_ptr_eq, NULL, NULL), "hash table init");
for (int i = 0; i < 8; i++) {
struct aws_hash_element *pElem;
ASSERT_SUCCESS(aws_hash_table_create(&hash_table, (void *)(intptr_t)i, &pElem, NULL), "insert element");
pElem->value = NULL;
}
// delete will not work as long as the error has set
ASSERT_FAILS(
aws_hash_table_foreach(&hash_table, s_foreach_cb_error_and_delete, NULL), "foreach error from callback");
// We should find all eight elements
int mask = 0;
ASSERT_SUCCESS(aws_hash_table_foreach(&hash_table, s_foreach_cb_tomask, &mask), "foreach invocation");
ASSERT_INT_EQUALS(0xff, mask, "bitmask");
void *target = (void *)(uintptr_t)3;
s_iter_count = 0;
ASSERT_SUCCESS(aws_hash_table_foreach(&hash_table, s_foreach_cb_deltarget, &target), "foreach invocation");
ASSERT_INT_EQUALS(8, s_iter_count, "iteration should not stop when deleting");
mask = 0;
ASSERT_SUCCESS(aws_hash_table_foreach(&hash_table, s_foreach_cb_tomask, &mask), "foreach invocation");
ASSERT_INT_EQUALS(0xf7, mask, "element 3 deleted");
s_iter_count = 0;
int remain = 4;
ASSERT_SUCCESS(aws_hash_table_foreach(&hash_table, s_foreach_cb_cutoff, &remain), "foreach invocation");
ASSERT_INT_EQUALS(0, remain, "no more remaining iterations");
ASSERT_INT_EQUALS(4, s_iter_count, "correct iteration count");
s_iter_count = 0;
remain = 4;
ASSERT_SUCCESS(aws_hash_table_foreach(&hash_table, s_foreach_cb_cutoff_del, &remain), "foreach invocation");
ASSERT_INT_EQUALS(4, s_iter_count, "correct iteration count");
// we use remain as a side channel to report which element we deleted
int expected_mask = 0xf7 & ~(1 << remain);
mask = 0;
ASSERT_SUCCESS(aws_hash_table_foreach(&hash_table, s_foreach_cb_tomask, &mask), "foreach invocation");
ASSERT_INT_EQUALS(expected_mask, mask, "stop element deleted");
aws_hash_table_clean_up(&hash_table);
return 0;
}
/*
* Convenience functions for a hash table which uses uint64_t as keys, and whose
* hash function is just the identity function.
*/
static uint64_t s_hash_uint64_identity(const void *a) {
return *(uint64_t *)a;
}
static bool s_hash_uint64_eq(const void *a, const void *b) {
uint64_t my_a = *(uint64_t *)a;
uint64_t my_b = *(uint64_t *)b;
return my_a == my_b;
}
AWS_TEST_CASE(test_hash_table_iter, s_test_hash_table_iter_fn)
static int s_test_hash_table_iter_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
/* Table entries are: (2^0 -> 2^10), (2^1 -> 2^11), (2^2 -> 2^12), ..., (2^9 -> 2^19).
* We will iterate through the table and AND all the keys and all the values together
* to ensure that we have hit every element of the table.
*/
uint64_t powers_of_2[20];
uint64_t x = 1;
for (int i = 0; i < 20; ++i, x <<= 1) {
powers_of_2[i] = x;
}
struct aws_hash_table map;
ASSERT_SUCCESS(
aws_hash_table_init(&map, allocator, 10, s_hash_uint64_identity, s_hash_uint64_eq, NULL, NULL),
"hash table init");
struct aws_hash_element *elem;
for (int i = 0; i < 10; ++i) {
int ret = aws_hash_table_create(&map, (void *)(powers_of_2 + i), &elem, NULL);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
elem->value = (void *)(powers_of_2 + 10 + i);
}
uint64_t keys_bitflags = 0;
uint64_t values_bitflags = 0;
int num_elements = 0;
for (struct aws_hash_iter iter = aws_hash_iter_begin(&map); !aws_hash_iter_done(&iter); aws_hash_iter_next(&iter)) {
uint64_t key = *(const uint64_t *)iter.element.key;
uint64_t value = *(uint64_t *)iter.element.value;
keys_bitflags |= key;
values_bitflags |= value;
++num_elements;
}
ASSERT_INT_EQUALS(num_elements, 10);
ASSERT_UINT_EQUALS(keys_bitflags, 0x3ffULL); // keys are bottom 10 bits
ASSERT_UINT_EQUALS(values_bitflags, 0xffc00ULL); // values are next 10 bits
aws_hash_table_clean_up(&map);
return 0;
}
AWS_TEST_CASE(test_hash_table_empty_iter, s_test_hash_table_empty_iter_fn)
static int s_test_hash_table_empty_iter_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table map;
ASSERT_SUCCESS(aws_hash_table_init(&map, allocator, 10, s_hash_uint64_identity, s_hash_uint64_eq, NULL, NULL));
struct aws_hash_iter iter = aws_hash_iter_begin(&map);
ASSERT_TRUE(aws_hash_iter_done(&iter));
aws_hash_iter_next(&iter);
ASSERT_TRUE(aws_hash_iter_done(&iter));
aws_hash_table_clean_up(&map);
return 0;
}
AWS_TEST_CASE(test_hash_table_iter_detail, s_test_hash_table_iter_detail)
static int s_test_hash_table_iter_detail(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
uint64_t keys[32], vals[32];
for (uint64_t i = 0; i < 32; i++) {
keys[i] = i;
vals[i] = i + 100;
}
struct aws_hash_table map;
ASSERT_SUCCESS(aws_hash_table_init(
&map, allocator, 10, s_hash_uint64_identity, s_hash_uint64_eq, destroy_key_record, destroy_value_record));
/*
* We'll fill hash table entries as follows:
* Slot Value
* 0 16
* 1 17
* 2 18
* 3 (empty)
* 4 (empty)
* 5 5
* 6 6
* 7 7
* 8 8
* 9 9
* 10 10
* 11 11
* 12 12
* 13 13
* 14 14
* 15 15
*/
for (size_t i = 5; i <= 18; i++) {
ASSERT_SUCCESS(aws_hash_table_put(&map, &keys[i], &vals[i], NULL));
}
/* Verify that we have the correct set of values in the right order, first of all */
#define ASSERT_ORDER(iter, ...) \
do { \
uint64_t expected[] = {__VA_ARGS__}; \
size_t count = sizeof(expected) / sizeof(*expected); \
for (size_t i = 0; i < count; i++) { \
ASSERT_FALSE(aws_hash_iter_done(&(iter))); \
ASSERT_INT_EQUALS(expected[i], *(const uint64_t *)(iter).element.key); \
ASSERT_INT_EQUALS(expected[i] + 100, *(const uint64_t *)(iter).element.value); \
aws_hash_iter_next(&(iter)); \
} \
} while (0)
struct aws_hash_iter iter = aws_hash_iter_begin(&map);
ASSERT_ORDER(iter, 16, 17, 18, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
ASSERT_TRUE(aws_hash_iter_done(&(iter)));
/* If we delete the very first slot, we expect that we'll see the remaining elements. */
iter = aws_hash_iter_begin(&map);
last_key = last_value = NULL;
aws_hash_iter_delete(&iter, true);
aws_hash_iter_next(&iter);
/* Since we passed true to delete, we should have destroyed the key and value */
ASSERT_PTR_EQUALS(&keys[16], last_key);
ASSERT_PTR_EQUALS(&vals[16], last_value);
ASSERT_ORDER(iter, 17, 18, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
/*
* If we delete one of the later elements (in this case, 5), the deletion has to wrap
* around the hash table. Verify that we don't see the element that wrapped around
* (in this case 17) twice.
*/
iter = aws_hash_iter_begin(&map);
last_key = last_value = NULL;
aws_hash_iter_next(&iter); /* 17 => 18 */
aws_hash_iter_next(&iter); /* 18 => 5 */
aws_hash_iter_delete(&iter, false);
ASSERT_NULL(last_key);
ASSERT_NULL(last_value);
aws_hash_iter_next(&iter);
ASSERT_ORDER(iter, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
/* Now verify that we did in fact wrap the element around */
iter = aws_hash_iter_begin(&map);
ASSERT_ORDER(iter, 17, 18, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
aws_hash_table_clean_up(&map);
#undef ASSERT_ORDER
return 0;
}
static uint64_t bad_hash_fn(const void *key) {
(void)key;
return 4; // chosen by fair dice roll
// guaranteed to be random
}
static bool everything_is_eq(const void *a, const void *b) {
(void)a;
(void)b;
return true;
}
AWS_TEST_CASE(test_hash_table_eq, s_test_hash_table_eq)
static int s_test_hash_table_eq(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table table_a, table_b;
ASSERT_SUCCESS(
aws_hash_table_init(&table_a, allocator, 16, aws_hash_string, aws_hash_callback_string_eq, NULL, NULL));
ASSERT_SUCCESS(aws_hash_table_init(&table_b, allocator, 16, bad_hash_fn, aws_hash_callback_string_eq, NULL, NULL));
AWS_STATIC_STRING_FROM_LITERAL(foo_a, "foo");
AWS_STATIC_STRING_FROM_LITERAL(foo_b, "foo");
AWS_STATIC_STRING_FROM_LITERAL(bar_a, "bar");
AWS_STATIC_STRING_FROM_LITERAL(bar_b, "bar");
AWS_STATIC_STRING_FROM_LITERAL(quux_a, "quux");
AWS_STATIC_STRING_FROM_LITERAL(quux_b, "quux");
ASSERT_SUCCESS(aws_hash_table_put(&table_a, foo_a, (void *)bar_a, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&table_b, foo_b, (void *)bar_b, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&table_a, bar_a, (void *)quux_a, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&table_b, bar_a, (void *)quux_a, NULL));
ASSERT_TRUE(aws_hash_table_eq(&table_a, &table_b, aws_hash_callback_string_eq));
ASSERT_TRUE(aws_hash_table_eq(&table_a, &table_b, everything_is_eq));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_ptr_eq));
/* Non-equal: Table B has extra members */
ASSERT_SUCCESS(aws_hash_table_put(&table_b, quux_a, (void *)quux_b, NULL));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_hash_callback_string_eq));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, everything_is_eq));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_ptr_eq));
/* Non-equal: Same number of members, but different keys */
ASSERT_SUCCESS(aws_hash_table_remove(&table_b, bar_a, NULL, NULL));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_hash_callback_string_eq));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, everything_is_eq));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_ptr_eq));
/* Non-equal: Same keys, values differ */
ASSERT_SUCCESS(aws_hash_table_remove(&table_b, quux_a, NULL, NULL));
ASSERT_SUCCESS(aws_hash_table_put(&table_b, bar_a, (void *)foo_b, NULL));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_hash_callback_string_eq));
ASSERT_TRUE(aws_hash_table_eq(&table_a, &table_b, everything_is_eq));
ASSERT_FALSE(aws_hash_table_eq(&table_a, &table_b, aws_ptr_eq));
aws_hash_table_clean_up(&table_b);
aws_hash_table_clean_up(&table_a);
return 0;
}
struct churn_entry {
void *key;
int original_index;
void *value;
int is_removed;
};
static int s_qsort_churn_entry(const void *a, const void *b) {
const struct churn_entry *const *p1 = a, *const *p2 = b;
const struct churn_entry *e1 = *p1, *e2 = *p2;
if (e1->key < e2->key) {
return -1;
}
if (e1->key > e2->key) {
return 1;
}
if (e1->original_index < e2->original_index) {
return -1;
}
if (e1->original_index > e2->original_index) {
return 1;
}
return 0;
}
static long s_timestamp(void) {
uint64_t time = 0;
aws_sys_clock_get_ticks(&time);
return (long)(time / 1000);
}
AWS_TEST_CASE(test_hash_churn, s_test_hash_churn_fn)
static int s_test_hash_churn_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
int i = 0;
struct aws_hash_table hash_table;
int nentries = 2 * 512 * 1024;
int err_code = aws_hash_table_init(&hash_table, allocator, nentries, aws_hash_ptr, aws_ptr_eq, NULL, NULL);
if (AWS_ERROR_SUCCESS != err_code) {
FAIL("hash table creation failed: %d", err_code);
}
/* Probability that we deliberately try to overwrite.
Note that random collisions can occur, and are not explicitly avoided. */
double pOverwrite = 0.05;
double pDelete = 0.05;
struct churn_entry *entries = calloc(sizeof(*entries), nentries);
struct churn_entry **permuted = calloc(sizeof(*permuted), nentries);
for (i = 0; i < nentries; i++) {
struct churn_entry *e = &entries[i];
permuted[i] = e;
e->original_index = i;
int mode = 0; /* 0 = new entry, 1 = overwrite, 2 = delete */
if (i != 0) {
double p = (double)rand();
if (p < pOverwrite) {
mode = 1;
} else if (p < pOverwrite + pDelete) {
mode = 2;
}
}
e->is_removed = 0;
if (mode == 0) {
e->key = (void *)(uintptr_t)rand();
e->value = (void *)(uintptr_t)rand();
} else if (mode == 1) {
e->key = entries[(size_t)rand() % i].key; /* not evenly distributed but close enough */
e->value = (void *)(uintptr_t)rand();
} else if (mode == 2) {
e->key = entries[(size_t)rand() % i].key; /* not evenly distributed but close enough */
e->value = 0;
e->is_removed = 1;
}
}
qsort(permuted, nentries, sizeof(*permuted), s_qsort_churn_entry);
long start = s_timestamp();
for (i = 0; i < nentries; i++) {
if (!(i % 100000)) {
printf("Put progress: %d/%d\n", i, nentries);
}
struct churn_entry *e = &entries[i];
if (e->is_removed) {
int was_present;
err_code = aws_hash_table_remove(&hash_table, e->key, NULL, &was_present);
ASSERT_SUCCESS(err_code, "Unexpected failure removing element");
if (i == 0 && entries[i - 1].key == e->key && entries[i - 1].is_removed) {
ASSERT_INT_EQUALS(0, was_present, "Expected item to be missing");
} else {
ASSERT_INT_EQUALS(1, was_present, "Expected item to be present");
}
} else {
struct aws_hash_element *pElem;
int was_created;
err_code = aws_hash_table_create(&hash_table, e->key, &pElem, &was_created);
ASSERT_SUCCESS(err_code, "Unexpected failure adding element");
pElem->value = e->value;
}
}
for (i = 0; i < nentries; i++) {
if (!(i % 100000)) {
printf("Check progress: %d/%d\n", i, nentries);
}
struct churn_entry *e = permuted[i];
if (i < nentries - 1 && permuted[i + 1]->key == e->key) {
// overwritten on subsequent step
continue;
}
struct aws_hash_element *pElem;
aws_hash_table_find(&hash_table, e->key, &pElem);
if (e->is_removed) {
ASSERT_NULL(pElem, "expected item to be deleted");
} else {
ASSERT_NOT_NULL(pElem, "expected item to be present");
ASSERT_PTR_EQUALS(e->value, pElem->value, "wrong value for item");
}
}
aws_hash_table_clean_up(&hash_table);
long end = s_timestamp();
free(entries);
free(permuted);
printf("elapsed=%ld us\n", end - start);
return 0;
}
AWS_TEST_CASE(test_hash_table_cleanup_idempotent, s_test_hash_table_cleanup_idempotent_fn)
static int s_test_hash_table_cleanup_idempotent_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
ASSERT_SUCCESS(
aws_hash_table_init(&hash_table, allocator, 10, aws_hash_c_string, aws_hash_callback_c_str_eq, NULL, NULL));
aws_hash_table_clean_up(&hash_table);
aws_hash_table_clean_up(&hash_table);
return 0;
}
struct hash_table_entry {
struct aws_allocator *allocator;
struct aws_byte_cursor key;
};
static void s_hash_table_entry_destroy(void *item) {
struct hash_table_entry *entry = item;
aws_mem_release(entry->allocator, entry);
}
AWS_TEST_CASE(test_hash_table_byte_cursor_create_find, s_test_hash_table_byte_cursor_create_find_fn)
static int s_test_hash_table_byte_cursor_create_find_fn(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_hash_table hash_table;
struct aws_hash_element *pElem;
int was_created;
int ret = aws_hash_table_init(
&hash_table,
allocator,
10,
aws_hash_byte_cursor_ptr,
(aws_hash_callback_eq_fn *)aws_byte_cursor_eq,
NULL,
s_hash_table_entry_destroy);
ASSERT_SUCCESS(ret, "Hash Map init should have succeeded.");
/* First element of hash, both key and value are statically allocated
* strings */
AWS_STATIC_STRING_FROM_LITERAL(key_1_str, "tweedle dee");
struct hash_table_entry *val_1 = aws_mem_acquire(allocator, sizeof(struct hash_table_entry));
val_1->allocator = allocator;
val_1->key = aws_byte_cursor_from_string(key_1_str);
/* Second element of hash, only value is dynamically allocated string */
AWS_STATIC_STRING_FROM_LITERAL(key_2_str, "what's for dinner?");
struct hash_table_entry *val_2 = aws_mem_acquire(allocator, sizeof(struct hash_table_entry));
val_2->allocator = allocator;
val_2->key = aws_byte_cursor_from_string(key_2_str);
/* Third element of hash, only key is dynamically allocated string */
uint8_t bytes[] = {0x88, 0x00, 0xaa, 0x13, 0xb7, 0x93, 0x7f, 0xdd, 0xbb, 0x62};
struct aws_string *key_3_str = aws_string_new_from_array(allocator, bytes, 10);
struct hash_table_entry *val_3 = aws_mem_acquire(allocator, sizeof(struct hash_table_entry));
val_3->allocator = allocator;
val_3->key = aws_byte_cursor_from_string(key_3_str);
ret = aws_hash_table_create(&hash_table, (void *)&val_1->key, &pElem, &was_created);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
ASSERT_INT_EQUALS(1, was_created, "Hash Map put should have created a new element.");
pElem->value = (void *)val_1;
/* Try passing a NULL was_created this time */
ret = aws_hash_table_create(&hash_table, (void *)&val_2->key, &pElem, NULL);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
pElem->value = (void *)val_2;
ret = aws_hash_table_create(&hash_table, (void *)&val_3->key, &pElem, NULL);
ASSERT_SUCCESS(ret, "Hash Map put should have succeeded.");
pElem->value = (void *)val_3;
ret = aws_hash_table_find(&hash_table, (void *)&val_1->key, &pElem);
ASSERT_SUCCESS(ret, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
"tweedle dee",
strlen("tweedle dee"),
((struct aws_byte_cursor *)pElem->key)->ptr,
((struct aws_byte_cursor *)pElem->key)->len,
"Returned key for %s, should have been %s",
"tweedle dee",
"tweedle dee");
ASSERT_PTR_EQUALS(val_1, pElem->value);
ret = aws_hash_table_find(&hash_table, (void *)&val_2->key, &pElem);
ASSERT_SUCCESS(ret, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
"what's for dinner?",
strlen("what's for dinner?"),
((struct aws_byte_cursor *)pElem->key)->ptr,
((struct aws_byte_cursor *)pElem->key)->len,
"Returned key for %s, should have been %s",
"what's for dinner?",
"what's for dinner?");
ASSERT_PTR_EQUALS(val_2, pElem->value);
ret = aws_hash_table_find(&hash_table, (void *)&val_3->key, &pElem);
ASSERT_SUCCESS(ret, "Hash Map get should have succeeded.");
ASSERT_BIN_ARRAYS_EQUALS(
bytes,
10,
((struct aws_byte_cursor *)pElem->key)->ptr,
((struct aws_byte_cursor *)pElem->key)->len,
"Returned key for %02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx should have been same",
bytes[0],
bytes[1],
bytes[2],
bytes[3],
bytes[4],
bytes[5],
bytes[6],
bytes[7],
bytes[8],
bytes[9]);
ASSERT_PTR_EQUALS(val_3, pElem->value);
aws_hash_table_clean_up(&hash_table);
aws_string_destroy(key_3_str);
return 0;
}
AWS_TEST_CASE(test_hash_combine, s_test_hash_combine_fn)
static int s_test_hash_combine_fn(struct aws_allocator *allocator, void *ctx) {
(void)allocator;
(void)ctx;
/* We're assuming that the underlying hashing function works well.
* This test just makes sure we hooked it up right for 2 64bit values */
uint64_t a = 0x123456789abcdef;
uint64_t b = 0xfedcba987654321;
uint64_t c = aws_hash_combine(a, b);
/* Sanity check */
ASSERT_TRUE(c != a);
ASSERT_TRUE(c != b);
/* Same inputs gets same results, right? */
ASSERT_UINT_EQUALS(c, aws_hash_combine(a, b));
/* Result spread across all bytes, right? */
uint8_t *c_bytes = (uint8_t *)&c;
for (size_t i = 0; i < sizeof(c); ++i) {
ASSERT_TRUE(c_bytes[i] != 0);
}
/* Hash should NOT be commutative */
ASSERT_TRUE(aws_hash_combine(a, b) != aws_hash_combine(b, a));
return 0;
}
|