File: ring_buffer_test.c

package info (click to toggle)
aws-crt-python 0.20.4%2Bdfsg-1~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 72,656 kB
  • sloc: ansic: 381,805; python: 23,008; makefile: 6,251; sh: 4,536; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (392 lines) | stat: -rw-r--r-- 15,547 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/common/byte_buf.h>
#include <aws/common/condition_variable.h>
#include <aws/common/linked_list.h>
#include <aws/common/mutex.h>
#include <aws/common/ring_buffer.h>
#include <aws/common/thread.h>
#include <aws/testing/aws_test_harness.h>

static int s_test_1_to_1_acquire_release_wraps(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    struct aws_ring_buffer ring_buffer;
    size_t buf_size = 16;
    ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));

    struct aws_byte_buf vended_buffer;
    AWS_ZERO_STRUCT(vended_buffer);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer));
    uint8_t *ptr = vended_buffer.buffer;
    ASSERT_UINT_EQUALS(4, vended_buffer.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
    aws_ring_buffer_release(&ring_buffer, &vended_buffer);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer));
    ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
    aws_ring_buffer_release(&ring_buffer, &vended_buffer);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer));
    ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
    ASSERT_UINT_EQUALS(4, vended_buffer.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
    aws_ring_buffer_release(&ring_buffer, &vended_buffer);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer));
    ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
    aws_ring_buffer_release(&ring_buffer, &vended_buffer);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer));
    ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
    aws_ring_buffer_release(&ring_buffer, &vended_buffer);

    aws_ring_buffer_clean_up(&ring_buffer);

    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(ring_buffer_1_to_1_acquire_release_wraps_test, s_test_1_to_1_acquire_release_wraps)

static int s_test_release_after_full(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    struct aws_ring_buffer ring_buffer;
    size_t buf_size = 16;
    ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));

    struct aws_byte_buf vended_buffer_1;
    AWS_ZERO_STRUCT(vended_buffer_1);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 12, &vended_buffer_1));
    uint8_t *ptr = vended_buffer_1.buffer;
    ASSERT_UINT_EQUALS(12, vended_buffer_1.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));

    struct aws_byte_buf vended_buffer_2;
    AWS_ZERO_STRUCT(vended_buffer_2);
    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr + 12, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(4, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));

    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 1, &vended_buffer_1));

    aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
    aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);

    aws_ring_buffer_clean_up(&ring_buffer);

    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(ring_buffer_release_after_full_test, s_test_release_after_full)

static int s_test_acquire_up_to(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    struct aws_ring_buffer ring_buffer;
    size_t buf_size = 16;
    ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));

    struct aws_byte_buf vended_buffer_1;
    AWS_ZERO_STRUCT(vended_buffer_1);

    ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 12, &vended_buffer_1));
    uint8_t *ptr = vended_buffer_1.buffer;
    ASSERT_UINT_EQUALS(12, vended_buffer_1.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));

    struct aws_byte_buf vended_buffer_2;
    AWS_ZERO_STRUCT(vended_buffer_2);

    /* only 4 are available, so this should error. */
    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire_up_to(&ring_buffer, 5, 8, &vended_buffer_2));

    ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 4, 8, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr + 12, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(4, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));

    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 1, &vended_buffer_1));

    aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
    aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);

    ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 8, &vended_buffer_1));
    ASSERT_PTR_EQUALS(ptr, vended_buffer_1.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer_1.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));

    ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 8, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr + 8, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));

    aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
    aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);

    aws_ring_buffer_clean_up(&ring_buffer);

    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(ring_buffer_acquire_up_to_test, s_test_acquire_up_to)

static int s_test_acquire_tail_always_chases_head(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;
    struct aws_ring_buffer ring_buffer;
    size_t buf_size = 16;
    ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));

    struct aws_byte_buf vended_buffer_1;
    AWS_ZERO_STRUCT(vended_buffer_1);

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 12, &vended_buffer_1));
    uint8_t *ptr = vended_buffer_1.buffer;
    ASSERT_UINT_EQUALS(12, vended_buffer_1.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));

    struct aws_byte_buf vended_buffer_2;
    AWS_ZERO_STRUCT(vended_buffer_2);
    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr + 12, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(4, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));

    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 1, &vended_buffer_1));

    aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);

    /* we should turn over right here*/
    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_1));
    ASSERT_PTR_EQUALS(ptr, vended_buffer_1.buffer);
    ASSERT_UINT_EQUALS(8, vended_buffer_1.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));

    aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);

    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_2));

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 7, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr + 8, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(7, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
    /* tail will flip here. */
    aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);

    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_1));

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 7, &vended_buffer_1));
    ASSERT_PTR_EQUALS(ptr, vended_buffer_1.buffer);
    ASSERT_UINT_EQUALS(7, vended_buffer_1.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));

    aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);

    ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_2));

    ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 7, &vended_buffer_2));
    ASSERT_PTR_EQUALS(ptr + 7, vended_buffer_2.buffer);
    ASSERT_UINT_EQUALS(7, vended_buffer_2.capacity);
    ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
    aws_ring_buffer_clean_up(&ring_buffer);

    return AWS_OP_SUCCESS;
}

AWS_TEST_CASE(ring_buffer_acquire_tail_always_chases_head_test, s_test_acquire_tail_always_chases_head)

struct mt_test_data {
    struct aws_ring_buffer ring_buf;
    struct aws_linked_list buffer_queue;
    struct aws_mutex mutex;
    struct aws_condition_variable termination_signal;
    int consumer_count;
    int max_count;
    bool consumer_finished;
    bool match_failed;
};

struct mt_test_buffer_node {
    struct aws_linked_list_node node;
    struct aws_byte_buf buf;
};

/* why so high? because the up_to allocs can get REALLY fragmented. */
#define MT_BUFFER_COUNT 60
#define MT_TEST_BUFFER_SIZE 16

static void s_consumer_thread(void *args) {
    struct mt_test_data *test_data = args;

    while (test_data->consumer_count < test_data->max_count) {
        aws_mutex_lock(&test_data->mutex);

        struct aws_linked_list_node *node = NULL;

        if (!aws_linked_list_empty(&test_data->buffer_queue)) {
            node = aws_linked_list_pop_front(&test_data->buffer_queue);
        }

        aws_mutex_unlock(&test_data->mutex);

        if (!node) {
            continue;
        }

        struct mt_test_buffer_node *buffer_node = AWS_CONTAINER_OF(node, struct mt_test_buffer_node, node);

        char counter_data[MT_TEST_BUFFER_SIZE + 1];
        AWS_ZERO_ARRAY(counter_data);

        size_t written = 0;
        int num_to_write = test_data->consumer_count++;
        /* all this does is print count out as far as it can to fill the buffer. */
        while (written < buffer_node->buf.capacity) {
            int bytes_written =
                snprintf(counter_data + written, buffer_node->buf.capacity - written, "%d", num_to_write);

            if (bytes_written > 0 && bytes_written < (int)(buffer_node->buf.capacity - written)) {
                written += bytes_written;
            } else {
                break;
            }
        }

        int not_matched = memcmp(buffer_node->buf.buffer, counter_data, written);

        if (not_matched) {
            fprintf(stderr, "match failed!\n");
            fprintf(stderr, "produced buffer was ");
            fwrite(buffer_node->buf.buffer, 1, buffer_node->buf.capacity, stderr);
            fprintf(stderr, " but we were expecting %s\n", counter_data);
            test_data->match_failed = true;
            aws_ring_buffer_release(&test_data->ring_buf, &buffer_node->buf);
            break;
        }

        aws_ring_buffer_release(&test_data->ring_buf, &buffer_node->buf);
    }

    aws_mutex_lock(&test_data->mutex);
    test_data->consumer_finished = true;
    aws_mutex_unlock(&test_data->mutex);

    aws_condition_variable_notify_one(&test_data->termination_signal);
}

static bool s_termination_predicate(void *args) {
    struct mt_test_data *test_data = args;

    return test_data->consumer_finished;
}

static int s_acquire_up_to_wrapper(struct aws_ring_buffer *ring_buf, size_t requested, struct aws_byte_buf *dest) {
    if (requested >= 4) {
        return aws_ring_buffer_acquire_up_to(ring_buf, 4, requested, dest);
    }

    return aws_ring_buffer_acquire_up_to(ring_buf, 1, requested, dest);
}

static int s_test_acquire_any_muti_threaded(
    struct aws_allocator *allocator,
    int (*acquire_fn)(struct aws_ring_buffer *, size_t, struct aws_byte_buf *)) {
    /* spin up a consumer thread, let current thread be the producer. Let them fight it out and give a chance
     * for race conditions to happen and explode the universe. */

    struct mt_test_data test_data = {
        .match_failed = false,
        .consumer_count = 0,
        .mutex = AWS_MUTEX_INIT,
        .max_count = 1000000,
        .consumer_finished = false,
        .termination_signal = AWS_CONDITION_VARIABLE_INIT,
    };

    static struct mt_test_buffer_node s_buffer_nodes[MT_BUFFER_COUNT];

    /* 3 16 byte acquirable buffers + 15 bytes == 63 */
    ASSERT_SUCCESS(aws_ring_buffer_init(&test_data.ring_buf, allocator, 3 * MT_TEST_BUFFER_SIZE + 15));
    aws_linked_list_init(&test_data.buffer_queue);

    struct aws_thread consumer_thread;

    ASSERT_SUCCESS(aws_thread_init(&consumer_thread, allocator));
    ASSERT_SUCCESS(aws_thread_launch(&consumer_thread, s_consumer_thread, &test_data, NULL));

    int counter = 0;

    /* consumer_finished isn't protected and we don't need it to be immediately and it won't rip,
     * we just need it eventually if the consumer thread fails prematurely. */
    while (counter < test_data.max_count && !test_data.consumer_finished) {
        struct aws_byte_buf dest;
        AWS_ZERO_STRUCT(dest);

        if (!acquire_fn(&test_data.ring_buf, MT_TEST_BUFFER_SIZE, &dest)) {
            size_t written = 0;
            memset(dest.buffer, 0, dest.capacity);
            /* all this does is print count out as far as it can to fill the buffer. */
            while (written < dest.capacity) {
                int bytes_written = snprintf((char *)dest.buffer + written, dest.capacity - written, "%d", counter);

                if (bytes_written > 0 && bytes_written < (int)(dest.capacity - written)) {
                    written += bytes_written;
                } else {
                    break;
                }
            }

            int index = counter % MT_BUFFER_COUNT;
            s_buffer_nodes[index].buf = dest;
            counter++;

            aws_mutex_lock(&test_data.mutex);
            aws_linked_list_push_back(&test_data.buffer_queue, &s_buffer_nodes[index].node);
            aws_mutex_unlock(&test_data.mutex);
        }
    }

    aws_mutex_lock(&test_data.mutex);
    aws_condition_variable_wait_pred(
        &test_data.termination_signal, &test_data.mutex, s_termination_predicate, &test_data);
    aws_mutex_unlock(&test_data.mutex);

    aws_thread_join(&consumer_thread);

    aws_ring_buffer_clean_up(&test_data.ring_buf);
    aws_thread_clean_up(&consumer_thread);

    ASSERT_FALSE(test_data.match_failed);

    return AWS_OP_SUCCESS;
}

static int s_test_acquire_multi_threaded(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    return s_test_acquire_any_muti_threaded(allocator, aws_ring_buffer_acquire);
}

AWS_TEST_CASE(ring_buffer_acquire_multi_threaded_test, s_test_acquire_multi_threaded)

static int s_test_acquire_up_to_multi_threaded(struct aws_allocator *allocator, void *ctx) {
    (void)ctx;

    return s_test_acquire_any_muti_threaded(allocator, s_acquire_up_to_wrapper);
}

AWS_TEST_CASE(ring_buffer_acquire_up_to_multi_threaded_test, s_test_acquire_up_to_multi_threaded)