1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/byte_buf.h>
#include <aws/common/condition_variable.h>
#include <aws/common/linked_list.h>
#include <aws/common/mutex.h>
#include <aws/common/ring_buffer.h>
#include <aws/common/thread.h>
#include <aws/testing/aws_test_harness.h>
static int s_test_1_to_1_acquire_release_wraps(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_ring_buffer ring_buffer;
size_t buf_size = 16;
ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));
struct aws_byte_buf vended_buffer;
AWS_ZERO_STRUCT(vended_buffer);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer));
uint8_t *ptr = vended_buffer.buffer;
ASSERT_UINT_EQUALS(4, vended_buffer.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
aws_ring_buffer_release(&ring_buffer, &vended_buffer);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer));
ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
aws_ring_buffer_release(&ring_buffer, &vended_buffer);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer));
ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
ASSERT_UINT_EQUALS(4, vended_buffer.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
aws_ring_buffer_release(&ring_buffer, &vended_buffer);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer));
ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
aws_ring_buffer_release(&ring_buffer, &vended_buffer);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer));
ASSERT_PTR_EQUALS(ptr, vended_buffer.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer));
aws_ring_buffer_release(&ring_buffer, &vended_buffer);
aws_ring_buffer_clean_up(&ring_buffer);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(ring_buffer_1_to_1_acquire_release_wraps_test, s_test_1_to_1_acquire_release_wraps)
static int s_test_release_after_full(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_ring_buffer ring_buffer;
size_t buf_size = 16;
ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));
struct aws_byte_buf vended_buffer_1;
AWS_ZERO_STRUCT(vended_buffer_1);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 12, &vended_buffer_1));
uint8_t *ptr = vended_buffer_1.buffer;
ASSERT_UINT_EQUALS(12, vended_buffer_1.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));
struct aws_byte_buf vended_buffer_2;
AWS_ZERO_STRUCT(vended_buffer_2);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr + 12, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(4, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 1, &vended_buffer_1));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);
aws_ring_buffer_clean_up(&ring_buffer);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(ring_buffer_release_after_full_test, s_test_release_after_full)
static int s_test_acquire_up_to(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_ring_buffer ring_buffer;
size_t buf_size = 16;
ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));
struct aws_byte_buf vended_buffer_1;
AWS_ZERO_STRUCT(vended_buffer_1);
ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 12, &vended_buffer_1));
uint8_t *ptr = vended_buffer_1.buffer;
ASSERT_UINT_EQUALS(12, vended_buffer_1.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));
struct aws_byte_buf vended_buffer_2;
AWS_ZERO_STRUCT(vended_buffer_2);
/* only 4 are available, so this should error. */
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire_up_to(&ring_buffer, 5, 8, &vended_buffer_2));
ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 4, 8, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr + 12, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(4, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 1, &vended_buffer_1));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);
ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 8, &vended_buffer_1));
ASSERT_PTR_EQUALS(ptr, vended_buffer_1.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer_1.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));
ASSERT_SUCCESS(aws_ring_buffer_acquire_up_to(&ring_buffer, 1, 8, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr + 8, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);
aws_ring_buffer_clean_up(&ring_buffer);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(ring_buffer_acquire_up_to_test, s_test_acquire_up_to)
static int s_test_acquire_tail_always_chases_head(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_ring_buffer ring_buffer;
size_t buf_size = 16;
ASSERT_SUCCESS(aws_ring_buffer_init(&ring_buffer, allocator, buf_size));
struct aws_byte_buf vended_buffer_1;
AWS_ZERO_STRUCT(vended_buffer_1);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 12, &vended_buffer_1));
uint8_t *ptr = vended_buffer_1.buffer;
ASSERT_UINT_EQUALS(12, vended_buffer_1.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));
struct aws_byte_buf vended_buffer_2;
AWS_ZERO_STRUCT(vended_buffer_2);
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 4, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr + 12, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(4, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 1, &vended_buffer_1));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
/* we should turn over right here*/
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_1));
ASSERT_PTR_EQUALS(ptr, vended_buffer_1.buffer);
ASSERT_UINT_EQUALS(8, vended_buffer_1.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_2));
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 7, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr + 8, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(7, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
/* tail will flip here. */
aws_ring_buffer_release(&ring_buffer, &vended_buffer_1);
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_1));
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 7, &vended_buffer_1));
ASSERT_PTR_EQUALS(ptr, vended_buffer_1.buffer);
ASSERT_UINT_EQUALS(7, vended_buffer_1.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_1));
aws_ring_buffer_release(&ring_buffer, &vended_buffer_2);
ASSERT_ERROR(AWS_ERROR_OOM, aws_ring_buffer_acquire(&ring_buffer, 8, &vended_buffer_2));
ASSERT_SUCCESS(aws_ring_buffer_acquire(&ring_buffer, 7, &vended_buffer_2));
ASSERT_PTR_EQUALS(ptr + 7, vended_buffer_2.buffer);
ASSERT_UINT_EQUALS(7, vended_buffer_2.capacity);
ASSERT_TRUE(aws_ring_buffer_buf_belongs_to_pool(&ring_buffer, &vended_buffer_2));
aws_ring_buffer_clean_up(&ring_buffer);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(ring_buffer_acquire_tail_always_chases_head_test, s_test_acquire_tail_always_chases_head)
struct mt_test_data {
struct aws_ring_buffer ring_buf;
struct aws_linked_list buffer_queue;
struct aws_mutex mutex;
struct aws_condition_variable termination_signal;
int consumer_count;
int max_count;
bool consumer_finished;
bool match_failed;
};
struct mt_test_buffer_node {
struct aws_linked_list_node node;
struct aws_byte_buf buf;
};
/* why so high? because the up_to allocs can get REALLY fragmented. */
#define MT_BUFFER_COUNT 60
#define MT_TEST_BUFFER_SIZE 16
static void s_consumer_thread(void *args) {
struct mt_test_data *test_data = args;
while (test_data->consumer_count < test_data->max_count) {
aws_mutex_lock(&test_data->mutex);
struct aws_linked_list_node *node = NULL;
if (!aws_linked_list_empty(&test_data->buffer_queue)) {
node = aws_linked_list_pop_front(&test_data->buffer_queue);
}
aws_mutex_unlock(&test_data->mutex);
if (!node) {
continue;
}
struct mt_test_buffer_node *buffer_node = AWS_CONTAINER_OF(node, struct mt_test_buffer_node, node);
char counter_data[MT_TEST_BUFFER_SIZE + 1];
AWS_ZERO_ARRAY(counter_data);
size_t written = 0;
int num_to_write = test_data->consumer_count++;
/* all this does is print count out as far as it can to fill the buffer. */
while (written < buffer_node->buf.capacity) {
int bytes_written =
snprintf(counter_data + written, buffer_node->buf.capacity - written, "%d", num_to_write);
if (bytes_written > 0 && bytes_written < (int)(buffer_node->buf.capacity - written)) {
written += bytes_written;
} else {
break;
}
}
int not_matched = memcmp(buffer_node->buf.buffer, counter_data, written);
if (not_matched) {
fprintf(stderr, "match failed!\n");
fprintf(stderr, "produced buffer was ");
fwrite(buffer_node->buf.buffer, 1, buffer_node->buf.capacity, stderr);
fprintf(stderr, " but we were expecting %s\n", counter_data);
test_data->match_failed = true;
aws_ring_buffer_release(&test_data->ring_buf, &buffer_node->buf);
break;
}
aws_ring_buffer_release(&test_data->ring_buf, &buffer_node->buf);
}
aws_mutex_lock(&test_data->mutex);
test_data->consumer_finished = true;
aws_mutex_unlock(&test_data->mutex);
aws_condition_variable_notify_one(&test_data->termination_signal);
}
static bool s_termination_predicate(void *args) {
struct mt_test_data *test_data = args;
return test_data->consumer_finished;
}
static int s_acquire_up_to_wrapper(struct aws_ring_buffer *ring_buf, size_t requested, struct aws_byte_buf *dest) {
if (requested >= 4) {
return aws_ring_buffer_acquire_up_to(ring_buf, 4, requested, dest);
}
return aws_ring_buffer_acquire_up_to(ring_buf, 1, requested, dest);
}
static int s_test_acquire_any_muti_threaded(
struct aws_allocator *allocator,
int (*acquire_fn)(struct aws_ring_buffer *, size_t, struct aws_byte_buf *)) {
/* spin up a consumer thread, let current thread be the producer. Let them fight it out and give a chance
* for race conditions to happen and explode the universe. */
struct mt_test_data test_data = {
.match_failed = false,
.consumer_count = 0,
.mutex = AWS_MUTEX_INIT,
.max_count = 1000000,
.consumer_finished = false,
.termination_signal = AWS_CONDITION_VARIABLE_INIT,
};
static struct mt_test_buffer_node s_buffer_nodes[MT_BUFFER_COUNT];
/* 3 16 byte acquirable buffers + 15 bytes == 63 */
ASSERT_SUCCESS(aws_ring_buffer_init(&test_data.ring_buf, allocator, 3 * MT_TEST_BUFFER_SIZE + 15));
aws_linked_list_init(&test_data.buffer_queue);
struct aws_thread consumer_thread;
ASSERT_SUCCESS(aws_thread_init(&consumer_thread, allocator));
ASSERT_SUCCESS(aws_thread_launch(&consumer_thread, s_consumer_thread, &test_data, NULL));
int counter = 0;
/* consumer_finished isn't protected and we don't need it to be immediately and it won't rip,
* we just need it eventually if the consumer thread fails prematurely. */
while (counter < test_data.max_count && !test_data.consumer_finished) {
struct aws_byte_buf dest;
AWS_ZERO_STRUCT(dest);
if (!acquire_fn(&test_data.ring_buf, MT_TEST_BUFFER_SIZE, &dest)) {
size_t written = 0;
memset(dest.buffer, 0, dest.capacity);
/* all this does is print count out as far as it can to fill the buffer. */
while (written < dest.capacity) {
int bytes_written = snprintf((char *)dest.buffer + written, dest.capacity - written, "%d", counter);
if (bytes_written > 0 && bytes_written < (int)(dest.capacity - written)) {
written += bytes_written;
} else {
break;
}
}
int index = counter % MT_BUFFER_COUNT;
s_buffer_nodes[index].buf = dest;
counter++;
aws_mutex_lock(&test_data.mutex);
aws_linked_list_push_back(&test_data.buffer_queue, &s_buffer_nodes[index].node);
aws_mutex_unlock(&test_data.mutex);
}
}
aws_mutex_lock(&test_data.mutex);
aws_condition_variable_wait_pred(
&test_data.termination_signal, &test_data.mutex, s_termination_predicate, &test_data);
aws_mutex_unlock(&test_data.mutex);
aws_thread_join(&consumer_thread);
aws_ring_buffer_clean_up(&test_data.ring_buf);
aws_thread_clean_up(&consumer_thread);
ASSERT_FALSE(test_data.match_failed);
return AWS_OP_SUCCESS;
}
static int s_test_acquire_multi_threaded(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
return s_test_acquire_any_muti_threaded(allocator, aws_ring_buffer_acquire);
}
AWS_TEST_CASE(ring_buffer_acquire_multi_threaded_test, s_test_acquire_multi_threaded)
static int s_test_acquire_up_to_multi_threaded(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
return s_test_acquire_any_muti_threaded(allocator, s_acquire_up_to_wrapper);
}
AWS_TEST_CASE(ring_buffer_acquire_up_to_multi_threaded_test, s_test_acquire_up_to_multi_threaded)
|