1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/thread_scheduler.h>
#include <aws/common/clock.h>
#include <aws/common/condition_variable.h>
#include <aws/common/task_scheduler.h>
#include <aws/testing/aws_test_harness.h>
struct executed_task_data {
struct aws_task *task;
void *arg;
enum aws_task_status status;
};
static struct executed_task_data s_executed_tasks[16];
static struct aws_mutex s_test_mutex = AWS_MUTEX_INIT;
static struct aws_condition_variable s_test_c_var = AWS_CONDITION_VARIABLE_INIT;
static size_t s_executed_tasks_n;
/* Updates tl_executed_tasks and tl_executed_task_n when function is executed */
static void s_task_n_fn(struct aws_task *task, void *arg, enum aws_task_status status) {
AWS_LOGF_INFO(AWS_LS_COMMON_GENERAL, "Invoking task");
aws_mutex_lock(&s_test_mutex);
AWS_LOGF_INFO(AWS_LS_COMMON_GENERAL, "Mutex Acquired");
if (s_executed_tasks_n > AWS_ARRAY_SIZE(s_executed_tasks)) {
AWS_ASSERT(0);
}
struct executed_task_data *data = &s_executed_tasks[s_executed_tasks_n++];
data->task = task;
data->arg = arg;
data->status = status;
aws_mutex_unlock(&s_test_mutex);
AWS_LOGF_INFO(AWS_LS_COMMON_GENERAL, "Mutex Released, notifying");
aws_condition_variable_notify_one(&s_test_c_var);
}
static bool s_scheduled_tasks_ran_predicate(void *arg) {
size_t *waiting_for = arg;
return *waiting_for == s_executed_tasks_n;
}
static int s_test_scheduler_ordering(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
aws_common_library_init(allocator);
s_executed_tasks_n = 0;
struct aws_thread_scheduler *thread_scheduler = aws_thread_scheduler_new(allocator, NULL);
ASSERT_NOT_NULL(thread_scheduler);
struct aws_task task2;
aws_task_init(&task2, s_task_n_fn, (void *)2, "scheduler_ordering_1");
/* schedule 250 ms in the future. */
uint64_t task2_timestamp = 0;
aws_high_res_clock_get_ticks(&task2_timestamp);
task2_timestamp += 250000000;
aws_thread_scheduler_schedule_future(thread_scheduler, &task2, task2_timestamp);
struct aws_task task1;
aws_task_init(&task1, s_task_n_fn, (void *)1, "scheduler_ordering_2");
/* schedule now. */
aws_thread_scheduler_schedule_now(thread_scheduler, &task1);
struct aws_task task3;
aws_task_init(&task3, s_task_n_fn, (void *)3, "scheduler_ordering_3");
/* schedule 500 ms in the future. */
uint64_t task3_timestamp = 0;
aws_high_res_clock_get_ticks(&task3_timestamp);
task3_timestamp += 500000000;
aws_thread_scheduler_schedule_future(thread_scheduler, &task3, task3_timestamp);
ASSERT_SUCCESS(aws_mutex_lock(&s_test_mutex));
size_t expected_runs = 2;
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&s_test_c_var, &s_test_mutex, s_scheduled_tasks_ran_predicate, &expected_runs));
ASSERT_UINT_EQUALS(2, s_executed_tasks_n);
struct executed_task_data *task_data = &s_executed_tasks[0];
ASSERT_PTR_EQUALS(&task1, task_data->task);
ASSERT_PTR_EQUALS(task1.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task_data->status);
task_data = &s_executed_tasks[1];
ASSERT_PTR_EQUALS(&task2, task_data->task);
ASSERT_PTR_EQUALS(task2.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task_data->status);
expected_runs = 3;
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&s_test_c_var, &s_test_mutex, s_scheduled_tasks_ran_predicate, &expected_runs));
ASSERT_SUCCESS(aws_mutex_unlock(&s_test_mutex));
/* run task 3 */
ASSERT_UINT_EQUALS(3, s_executed_tasks_n);
task_data = &s_executed_tasks[2];
ASSERT_PTR_EQUALS(&task3, task_data->task);
ASSERT_PTR_EQUALS(task3.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task_data->status);
aws_thread_scheduler_release(thread_scheduler);
aws_common_library_clean_up();
return 0;
}
AWS_TEST_CASE(test_thread_scheduler_ordering, s_test_scheduler_ordering)
static int s_test_scheduler_happy_path_cancellation(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
aws_common_library_init(allocator);
s_executed_tasks_n = 0;
struct aws_thread_scheduler *thread_scheduler = aws_thread_scheduler_new(allocator, NULL);
ASSERT_NOT_NULL(thread_scheduler);
struct aws_task task2;
aws_task_init(&task2, s_task_n_fn, (void *)2, "scheduler_ordering_1");
/* schedule 250 ms in the future. */
uint64_t task2_timestamp = 0;
aws_high_res_clock_get_ticks(&task2_timestamp);
task2_timestamp += 250000000;
aws_thread_scheduler_schedule_future(thread_scheduler, &task2, task2_timestamp);
struct aws_task task1;
aws_task_init(&task1, s_task_n_fn, (void *)1, "scheduler_ordering_2");
/* schedule now. */
aws_thread_scheduler_schedule_now(thread_scheduler, &task1);
struct aws_task task3;
aws_task_init(&task3, s_task_n_fn, (void *)3, "scheduler_ordering_3");
/* schedule 500 ms in the future. */
uint64_t task3_timestamp = 0;
aws_high_res_clock_get_ticks(&task3_timestamp);
task3_timestamp += 500000000;
aws_thread_scheduler_schedule_future(thread_scheduler, &task3, task3_timestamp);
ASSERT_SUCCESS(aws_mutex_lock(&s_test_mutex));
size_t expected_runs = 2;
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&s_test_c_var, &s_test_mutex, s_scheduled_tasks_ran_predicate, &expected_runs));
ASSERT_UINT_EQUALS(2, s_executed_tasks_n);
struct executed_task_data *task_data = &s_executed_tasks[0];
ASSERT_PTR_EQUALS(&task1, task_data->task);
ASSERT_PTR_EQUALS(task1.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task_data->status);
task_data = &s_executed_tasks[1];
ASSERT_PTR_EQUALS(&task2, task_data->task);
ASSERT_PTR_EQUALS(task2.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task_data->status);
aws_thread_scheduler_cancel_task(thread_scheduler, &task3);
expected_runs = 3;
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&s_test_c_var, &s_test_mutex, s_scheduled_tasks_ran_predicate, &expected_runs));
ASSERT_SUCCESS(aws_mutex_unlock(&s_test_mutex));
/* run task 3 */
ASSERT_UINT_EQUALS(3, s_executed_tasks_n);
task_data = &s_executed_tasks[2];
ASSERT_PTR_EQUALS(&task3, task_data->task);
ASSERT_PTR_EQUALS(task3.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_CANCELED, task_data->status);
aws_thread_scheduler_release(thread_scheduler);
aws_common_library_clean_up();
return 0;
}
AWS_TEST_CASE(test_thread_scheduler_happy_path_cancellation, s_test_scheduler_happy_path_cancellation)
static struct aws_task s_cancel_task;
static void s_schedule_and_cancel_task(struct aws_task *task, void *arg, enum aws_task_status status) {
struct aws_thread_scheduler *scheduler = arg;
aws_task_init(&s_cancel_task, s_task_n_fn, (void *)2, "scheduler_ordering_2");
aws_thread_scheduler_schedule_now(scheduler, &s_cancel_task);
aws_thread_scheduler_cancel_task(scheduler, &s_cancel_task);
s_task_n_fn(task, arg, status);
}
/* schedule a task. Inside that task schedule and then immediately cancel it. This will exercise the pending to be
* scheduled code path. */
static int s_test_scheduler_cancellation_for_pending_scheduled_task(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
aws_common_library_init(allocator);
s_executed_tasks_n = 0;
struct aws_thread_scheduler *thread_scheduler = aws_thread_scheduler_new(allocator, NULL);
ASSERT_NOT_NULL(thread_scheduler);
struct aws_task task1;
aws_task_init(&task1, s_schedule_and_cancel_task, thread_scheduler, "scheduler_ordering_1");
aws_thread_scheduler_schedule_now(thread_scheduler, &task1);
ASSERT_SUCCESS(aws_mutex_lock(&s_test_mutex));
size_t expected_runs = 2;
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&s_test_c_var, &s_test_mutex, s_scheduled_tasks_ran_predicate, &expected_runs));
ASSERT_SUCCESS(aws_mutex_unlock(&s_test_mutex));
ASSERT_UINT_EQUALS(2, s_executed_tasks_n);
struct executed_task_data *task_data = &s_executed_tasks[0];
ASSERT_PTR_EQUALS(&task1, task_data->task);
ASSERT_PTR_EQUALS(task1.arg, task_data->arg);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task_data->status);
task_data = &s_executed_tasks[1];
ASSERT_PTR_EQUALS(&s_cancel_task, task_data->task);
ASSERT_INT_EQUALS(AWS_TASK_STATUS_CANCELED, task_data->status);
aws_thread_scheduler_release(thread_scheduler);
aws_common_library_clean_up();
return 0;
}
AWS_TEST_CASE(
test_scheduler_cancellation_for_pending_scheduled_task,
s_test_scheduler_cancellation_for_pending_scheduled_task)
|