1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/clock.h>
#include <aws/common/math.h>
#include <aws/common/mutex.h>
#include <aws/common/string.h>
#include <aws/http/private/h1_connection.h>
#include <aws/http/private/h1_decoder.h>
#include <aws/http/private/h1_stream.h>
#include <aws/http/private/request_response_impl.h>
#include <aws/http/status_code.h>
#include <aws/io/event_loop.h>
#include <aws/io/logging.h>
#include <inttypes.h>
#ifdef _MSC_VER
# pragma warning(disable : 4204) /* non-constant aggregate initializer */
#endif
enum {
DECODER_INITIAL_SCRATCH_SIZE = 256,
};
static int s_handler_process_read_message(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
struct aws_io_message *message);
static int s_handler_process_write_message(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
struct aws_io_message *message);
static int s_handler_increment_read_window(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
size_t size);
static int s_handler_shutdown(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
enum aws_channel_direction dir,
int error_code,
bool free_scarce_resources_immediately);
static size_t s_handler_initial_window_size(struct aws_channel_handler *handler);
static size_t s_handler_message_overhead(struct aws_channel_handler *handler);
static void s_handler_destroy(struct aws_channel_handler *handler);
static void s_handler_installed(struct aws_channel_handler *handler, struct aws_channel_slot *slot);
static struct aws_http_stream *s_make_request(
struct aws_http_connection *client_connection,
const struct aws_http_make_request_options *options);
static struct aws_http_stream *s_new_server_request_handler_stream(
const struct aws_http_request_handler_options *options);
static int s_stream_send_response(struct aws_http_stream *stream, struct aws_http_message *response);
static void s_connection_close(struct aws_http_connection *connection_base);
static void s_connection_stop_new_request(struct aws_http_connection *connection_base);
static bool s_connection_is_open(const struct aws_http_connection *connection_base);
static bool s_connection_new_requests_allowed(const struct aws_http_connection *connection_base);
static int s_decoder_on_request(
enum aws_http_method method_enum,
const struct aws_byte_cursor *method_str,
const struct aws_byte_cursor *uri,
void *user_data);
static int s_decoder_on_response(int status_code, void *user_data);
static int s_decoder_on_header(const struct aws_h1_decoded_header *header, void *user_data);
static int s_decoder_on_body(const struct aws_byte_cursor *data, bool finished, void *user_data);
static int s_decoder_on_done(void *user_data);
static void s_reset_statistics(struct aws_channel_handler *handler);
static void s_gather_statistics(struct aws_channel_handler *handler, struct aws_array_list *stats);
static void s_write_outgoing_stream(struct aws_h1_connection *connection, bool first_try);
static int s_try_process_next_stream_read_message(struct aws_h1_connection *connection, bool *out_stop_processing);
static struct aws_http_connection_vtable s_h1_connection_vtable = {
.channel_handler_vtable =
{
.process_read_message = s_handler_process_read_message,
.process_write_message = s_handler_process_write_message,
.increment_read_window = s_handler_increment_read_window,
.shutdown = s_handler_shutdown,
.initial_window_size = s_handler_initial_window_size,
.message_overhead = s_handler_message_overhead,
.destroy = s_handler_destroy,
.reset_statistics = s_reset_statistics,
.gather_statistics = s_gather_statistics,
},
.on_channel_handler_installed = s_handler_installed,
.make_request = s_make_request,
.new_server_request_handler_stream = s_new_server_request_handler_stream,
.stream_send_response = s_stream_send_response,
.close = s_connection_close,
.stop_new_requests = s_connection_stop_new_request,
.is_open = s_connection_is_open,
.new_requests_allowed = s_connection_new_requests_allowed,
.change_settings = NULL,
.send_ping = NULL,
.send_goaway = NULL,
.get_sent_goaway = NULL,
.get_received_goaway = NULL,
.get_local_settings = NULL,
.get_remote_settings = NULL,
};
static const struct aws_h1_decoder_vtable s_h1_decoder_vtable = {
.on_request = s_decoder_on_request,
.on_response = s_decoder_on_response,
.on_header = s_decoder_on_header,
.on_body = s_decoder_on_body,
.on_done = s_decoder_on_done,
};
void aws_h1_connection_lock_synced_data(struct aws_h1_connection *connection) {
int err = aws_mutex_lock(&connection->synced_data.lock);
AWS_ASSERT(!err);
(void)err;
}
void aws_h1_connection_unlock_synced_data(struct aws_h1_connection *connection) {
int err = aws_mutex_unlock(&connection->synced_data.lock);
AWS_ASSERT(!err);
(void)err;
}
/**
* Internal function for bringing connection to a stop.
* Invoked multiple times, including when:
* - Channel is shutting down in the read direction.
* - Channel is shutting down in the write direction.
* - An error occurs.
* - User wishes to close the connection (this is the only case where the function may run off-thread).
*/
static void s_stop(
struct aws_h1_connection *connection,
bool stop_reading,
bool stop_writing,
bool schedule_shutdown,
int error_code) {
AWS_ASSERT(stop_reading || stop_writing || schedule_shutdown); /* You are required to stop at least 1 thing */
if (stop_reading) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
connection->thread_data.is_reading_stopped = true;
}
if (stop_writing) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
connection->thread_data.is_writing_stopped = true;
}
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
/* Even if we're not scheduling shutdown just yet (ex: sent final request but waiting to read final response)
* we don't consider the connection "open" anymore so user can't create more streams */
connection->synced_data.is_open = false;
connection->synced_data.new_stream_error_code = AWS_ERROR_HTTP_CONNECTION_CLOSED;
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
if (schedule_shutdown) {
AWS_LOGF_INFO(
AWS_LS_HTTP_CONNECTION,
"id=%p: Shutting down connection with error code %d (%s).",
(void *)&connection->base,
error_code,
aws_error_name(error_code));
aws_channel_shutdown(connection->base.channel_slot->channel, error_code);
}
}
static void s_shutdown_due_to_error(struct aws_h1_connection *connection, int error_code) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
if (!error_code) {
error_code = AWS_ERROR_UNKNOWN;
}
/* Stop reading AND writing if an error occurs.
*
* It doesn't currently seem worth the complexity to distinguish between read errors and write errors.
* The only scenarios that would benefit from this are pipelining scenarios (ex: A server
* could continue sending a response to request A if there was an error reading request B).
* But pipelining in HTTP/1.1 is known to be fragile with regards to errors, so let's just keep it simple.
*/
s_stop(connection, true /*stop_reading*/, true /*stop_writing*/, true /*schedule_shutdown*/, error_code);
}
/**
* Public function for closing connection.
*/
static void s_connection_close(struct aws_http_connection *connection_base) {
struct aws_h1_connection *connection = AWS_CONTAINER_OF(connection_base, struct aws_h1_connection, base);
/* Don't stop reading/writing immediately, let that happen naturally during the channel shutdown process. */
s_stop(connection, false /*stop_reading*/, false /*stop_writing*/, true /*schedule_shutdown*/, AWS_ERROR_SUCCESS);
}
static void s_connection_stop_new_request(struct aws_http_connection *connection_base) {
struct aws_h1_connection *connection = AWS_CONTAINER_OF(connection_base, struct aws_h1_connection, base);
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
if (!connection->synced_data.new_stream_error_code) {
connection->synced_data.new_stream_error_code = AWS_ERROR_HTTP_CONNECTION_CLOSED;
}
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
}
static bool s_connection_is_open(const struct aws_http_connection *connection_base) {
struct aws_h1_connection *connection = AWS_CONTAINER_OF(connection_base, struct aws_h1_connection, base);
bool is_open;
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
is_open = connection->synced_data.is_open;
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
return is_open;
}
static bool s_connection_new_requests_allowed(const struct aws_http_connection *connection_base) {
struct aws_h1_connection *connection = AWS_CONTAINER_OF(connection_base, struct aws_h1_connection, base);
int new_stream_error_code;
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
new_stream_error_code = connection->synced_data.new_stream_error_code;
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
return new_stream_error_code == 0;
}
static int s_stream_send_response(struct aws_http_stream *stream, struct aws_http_message *response) {
AWS_PRECONDITION(stream);
AWS_PRECONDITION(response);
struct aws_h1_stream *h1_stream = AWS_CONTAINER_OF(stream, struct aws_h1_stream, base);
return aws_h1_stream_send_response(h1_stream, response);
}
/* Calculate the desired window size for connection that has switched protocols and become a midchannel handler. */
static size_t s_calculate_midchannel_desired_connection_window(struct aws_h1_connection *connection) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
AWS_ASSERT(connection->thread_data.has_switched_protocols);
if (!connection->base.channel_slot->adj_right) {
/* No downstream handler installed. */
return 0;
}
/* Connection is just dumbly forwarding aws_io_messages, so try to match downstream handler. */
return aws_channel_slot_downstream_read_window(connection->base.channel_slot);
}
/* Calculate the desired window size for a connection that is processing data for aws_http_streams. */
static size_t s_calculate_stream_mode_desired_connection_window(struct aws_h1_connection *connection) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
AWS_ASSERT(!connection->thread_data.has_switched_protocols);
if (!connection->base.stream_manual_window_management) {
return SIZE_MAX;
}
/* Connection window should match the available space in the read-buffer */
AWS_ASSERT(
connection->thread_data.read_buffer.pending_bytes <= connection->thread_data.read_buffer.capacity &&
"This isn't fatal, but our math is off");
const size_t desired_connection_window = aws_sub_size_saturating(
connection->thread_data.read_buffer.capacity, connection->thread_data.read_buffer.pending_bytes);
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Window stats: connection=%zu+%zu stream=%" PRIu64 " buffer=%zu/%zu",
(void *)&connection->base,
connection->thread_data.connection_window,
desired_connection_window - connection->thread_data.connection_window /*increment_size*/,
connection->thread_data.incoming_stream ? connection->thread_data.incoming_stream->thread_data.stream_window
: 0,
connection->thread_data.read_buffer.pending_bytes,
connection->thread_data.read_buffer.capacity);
return desired_connection_window;
}
/* Increment connection window, if necessary */
static int s_update_connection_window(struct aws_h1_connection *connection) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
if (connection->thread_data.is_reading_stopped) {
return AWS_OP_SUCCESS;
}
const size_t desired_size = connection->thread_data.has_switched_protocols
? s_calculate_midchannel_desired_connection_window(connection)
: s_calculate_stream_mode_desired_connection_window(connection);
const size_t increment_size = aws_sub_size_saturating(desired_size, connection->thread_data.connection_window);
if (increment_size > 0) {
/* Update local `connection_window`. See comments at variable's declaration site
* on why we use this instead of the official `aws_channel_slot.window_size` */
connection->thread_data.connection_window += increment_size;
connection->thread_data.recent_window_increments =
aws_add_size_saturating(connection->thread_data.recent_window_increments, increment_size);
if (aws_channel_slot_increment_read_window(connection->base.channel_slot, increment_size)) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to increment read window, error %d (%s). Closing connection.",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
}
return AWS_OP_SUCCESS;
}
int aws_h1_stream_activate(struct aws_http_stream *stream) {
struct aws_h1_stream *h1_stream = AWS_CONTAINER_OF(stream, struct aws_h1_stream, base);
struct aws_http_connection *base_connection = stream->owning_connection;
struct aws_h1_connection *connection = AWS_CONTAINER_OF(base_connection, struct aws_h1_connection, base);
bool should_schedule_task = false;
{ /* BEGIN CRITICAL SECTION */
/* Note: We're touching both the connection's and stream's synced_data in this section,
* which is OK because an h1_connection and all its h1_streams share a single lock. */
aws_h1_connection_lock_synced_data(connection);
if (stream->id) {
/* stream has already been activated. */
aws_h1_connection_unlock_synced_data(connection);
return AWS_OP_SUCCESS;
}
if (connection->synced_data.new_stream_error_code) {
aws_h1_connection_unlock_synced_data(connection);
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to activate the stream id=%p, new streams are not allowed now. error %d (%s)",
(void *)&connection->base,
(void *)stream,
connection->synced_data.new_stream_error_code,
aws_error_name(connection->synced_data.new_stream_error_code));
return aws_raise_error(connection->synced_data.new_stream_error_code);
}
stream->id = aws_http_connection_get_next_stream_id(base_connection);
if (!stream->id) {
aws_h1_connection_unlock_synced_data(connection);
/* aws_http_connection_get_next_stream_id() raises its own error. */
return AWS_OP_ERR;
}
/* ID successfully assigned */
h1_stream->synced_data.api_state = AWS_H1_STREAM_API_STATE_ACTIVE;
aws_linked_list_push_back(&connection->synced_data.new_client_stream_list, &h1_stream->node);
if (!connection->synced_data.is_cross_thread_work_task_scheduled) {
connection->synced_data.is_cross_thread_work_task_scheduled = true;
should_schedule_task = true;
}
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
/* connection keeps activated stream alive until stream completes */
aws_atomic_fetch_add(&stream->refcount, 1);
stream->metrics.stream_id = stream->id;
if (should_schedule_task) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION, "id=%p: Scheduling connection cross-thread work task.", (void *)base_connection);
aws_channel_schedule_task_now(connection->base.channel_slot->channel, &connection->cross_thread_work_task);
} else {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Connection cross-thread work task was already scheduled",
(void *)base_connection);
}
return AWS_OP_SUCCESS;
}
void aws_h1_stream_cancel(struct aws_http_stream *stream, int error_code) {
struct aws_h1_stream *h1_stream = AWS_CONTAINER_OF(stream, struct aws_h1_stream, base);
struct aws_http_connection *base_connection = stream->owning_connection;
struct aws_h1_connection *connection = AWS_CONTAINER_OF(base_connection, struct aws_h1_connection, base);
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
if (h1_stream->synced_data.api_state != AWS_H1_STREAM_API_STATE_ACTIVE ||
connection->synced_data.is_open == false) {
/* Not active, nothing to cancel. */
aws_h1_connection_unlock_synced_data(connection);
AWS_LOGF_DEBUG(AWS_LS_HTTP_STREAM, "id=%p: Stream not active, nothing to cancel.", (void *)stream);
return;
}
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
AWS_LOGF_INFO(
AWS_LS_HTTP_CONNECTION,
"id=%p: Connection shutting down due to stream=%p cancelled with error code %d (%s).",
(void *)&connection->base,
(void *)stream,
error_code,
aws_error_name(error_code));
s_stop(connection, false /*stop_reading*/, false /*stop_writing*/, true /*schedule_shutdown*/, error_code);
}
struct aws_http_stream *s_make_request(
struct aws_http_connection *client_connection,
const struct aws_http_make_request_options *options) {
struct aws_h1_stream *stream = aws_h1_stream_new_request(client_connection, options);
if (!stream) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Cannot create request stream, error %d (%s)",
(void *)client_connection,
aws_last_error(),
aws_error_name(aws_last_error()));
return NULL;
}
struct aws_h1_connection *connection = AWS_CONTAINER_OF(client_connection, struct aws_h1_connection, base);
/* Insert new stream into pending list, and schedule outgoing_stream_task if it's not already running. */
int new_stream_error_code;
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
new_stream_error_code = connection->synced_data.new_stream_error_code;
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
if (new_stream_error_code) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Cannot create request stream, error %d (%s)",
(void *)client_connection,
new_stream_error_code,
aws_error_name(new_stream_error_code));
aws_raise_error(new_stream_error_code);
goto error;
}
/* Success! */
struct aws_byte_cursor method;
aws_http_message_get_request_method(options->request, &method);
stream->base.request_method = aws_http_str_to_method(method);
struct aws_byte_cursor path;
aws_http_message_get_request_path(options->request, &path);
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Created client request on connection=%p: " PRInSTR " " PRInSTR " " PRInSTR,
(void *)&stream->base,
(void *)client_connection,
AWS_BYTE_CURSOR_PRI(method),
AWS_BYTE_CURSOR_PRI(path),
AWS_BYTE_CURSOR_PRI(aws_http_version_to_str(connection->base.http_version)));
return &stream->base;
error:
/* Force destruction of the stream, avoiding ref counting */
stream->base.vtable->destroy(&stream->base);
return NULL;
}
/* Extract work items from synced_data, and perform the work on-thread. */
static void s_cross_thread_work_task(struct aws_channel_task *channel_task, void *arg, enum aws_task_status status) {
(void)channel_task;
struct aws_h1_connection *connection = arg;
if (status != AWS_TASK_STATUS_RUN_READY) {
return;
}
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION, "id=%p: Running connection cross-thread work task.", (void *)&connection->base);
/* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
connection->synced_data.is_cross_thread_work_task_scheduled = false;
bool has_new_client_streams = !aws_linked_list_empty(&connection->synced_data.new_client_stream_list);
aws_linked_list_move_all_back(
&connection->thread_data.stream_list, &connection->synced_data.new_client_stream_list);
aws_h1_connection_unlock_synced_data(connection);
/* END CRITICAL SECTION */
/* Kick off outgoing-stream task if necessary */
if (has_new_client_streams) {
aws_h1_connection_try_write_outgoing_stream(connection);
}
}
static bool s_aws_http_stream_was_successful_connect(struct aws_h1_stream *stream) {
struct aws_http_stream *base = &stream->base;
if (base->request_method != AWS_HTTP_METHOD_CONNECT) {
return false;
}
if (base->client_data == NULL) {
return false;
}
if (base->client_data->response_status != AWS_HTTP_STATUS_CODE_200_OK) {
return false;
}
return true;
}
/**
* Validate and perform a protocol switch on a connection. Protocol switching essentially turns the connection's
* handler into a dummy pass-through. It is valid to switch protocols to the same protocol resulting in a channel
* that has a "dead" http handler in the middle of the channel (which negotiated the CONNECT through the proxy) and
* a "live" handler on the end which takes the actual http requests. By doing this, we get the exact same
* behavior whether we're transitioning to http or any other protocol: once the CONNECT succeeds
* the first http handler is put in pass-through mode and a new protocol (which could be http) is tacked onto the end.
*/
static int s_aws_http1_switch_protocols(struct aws_h1_connection *connection) {
AWS_FATAL_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
/* Switching protocols while there are multiple streams is too complex to deal with.
* Ensure stream_list has exactly this 1 stream in it. */
if (aws_linked_list_begin(&connection->thread_data.stream_list) !=
aws_linked_list_rbegin(&connection->thread_data.stream_list)) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Cannot switch protocols while further streams are pending, closing connection.",
(void *)&connection->base);
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Connection has switched protocols, another channel handler must be installed to"
" deal with further data.",
(void *)&connection->base);
connection->thread_data.has_switched_protocols = true;
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
connection->synced_data.new_stream_error_code = AWS_ERROR_HTTP_SWITCHED_PROTOCOLS;
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
return AWS_OP_SUCCESS;
}
static void s_stream_complete(struct aws_h1_stream *stream, int error_code) {
struct aws_h1_connection *connection =
AWS_CONTAINER_OF(stream->base.owning_connection, struct aws_h1_connection, base);
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
/*
* If this is the end of a successful CONNECT request, mark ourselves as pass-through since the proxy layer
* will be tacking on a new http handler (and possibly a tls handler in-between).
*/
if (error_code == AWS_ERROR_SUCCESS && s_aws_http_stream_was_successful_connect(stream)) {
if (s_aws_http1_switch_protocols(connection)) {
error_code = AWS_ERROR_HTTP_PROTOCOL_SWITCH_FAILURE;
s_shutdown_due_to_error(connection, error_code);
}
}
if (stream->base.client_data && stream->base.client_data->response_first_byte_timeout_task.fn != NULL) {
/* There is an outstanding response timeout task, but stream completed, we can cancel it now. We are
* safe to do it as we always on connection thread to schedule the task or cancel it */
struct aws_event_loop *connection_loop = aws_channel_get_event_loop(connection->base.channel_slot->channel);
/* The task will be zeroed out within the call */
aws_event_loop_cancel_task(connection_loop, &stream->base.client_data->response_first_byte_timeout_task);
}
if (error_code != AWS_ERROR_SUCCESS) {
if (stream->base.client_data && stream->is_incoming_message_done) {
/* As a request that finished receiving the response, we ignore error and
* consider it finished successfully */
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Ignoring error code %d (%s). The response has been fully received,"
"so the stream will complete successfully.",
(void *)&stream->base,
error_code,
aws_error_name(error_code));
error_code = AWS_ERROR_SUCCESS;
}
if (stream->base.server_data && stream->is_outgoing_message_done) {
/* As a server finished sending the response, but still failed with the request was not finished receiving.
* We ignore error and consider it finished successfully */
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Ignoring error code %d (%s). The response has been fully sent,"
" so the stream will complete successfully",
(void *)&stream->base,
error_code,
aws_error_name(error_code));
error_code = AWS_ERROR_SUCCESS;
}
}
/* Remove stream from list. */
aws_linked_list_remove(&stream->node);
/* Nice logging */
if (error_code) {
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Stream completed with error code %d (%s).",
(void *)&stream->base,
error_code,
aws_error_name(error_code));
} else if (stream->base.client_data) {
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Client request complete, response status: %d (%s).",
(void *)&stream->base,
stream->base.client_data->response_status,
aws_http_status_text(stream->base.client_data->response_status));
} else {
AWS_ASSERT(stream->base.server_data);
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Server response to " PRInSTR " request complete.",
(void *)&stream->base,
AWS_BYTE_CURSOR_PRI(stream->base.server_data->request_method_str));
}
/* If connection must shut down, do it BEFORE invoking stream-complete callback.
* That way, if aws_http_connection_is_open() is called from stream-complete callback, it returns false. */
if (stream->is_final_stream) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Closing connection due to completion of final stream.",
(void *)&connection->base);
s_connection_close(&connection->base);
}
{ /* BEGIN CRITICAL SECTION */
/* Note: We're touching the stream's synced_data here, which is OK
* because an h1_connection and all its h1_streams share a single lock. */
aws_h1_connection_lock_synced_data(connection);
/* Mark stream complete */
stream->synced_data.api_state = AWS_H1_STREAM_API_STATE_COMPLETE;
/* Move chunks out of synced data */
aws_linked_list_move_all_back(&stream->thread_data.pending_chunk_list, &stream->synced_data.pending_chunk_list);
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
/* Complete any leftover chunks */
while (!aws_linked_list_empty(&stream->thread_data.pending_chunk_list)) {
struct aws_linked_list_node *node = aws_linked_list_pop_front(&stream->thread_data.pending_chunk_list);
struct aws_h1_chunk *chunk = AWS_CONTAINER_OF(node, struct aws_h1_chunk, node);
aws_h1_chunk_complete_and_destroy(chunk, &stream->base, AWS_ERROR_HTTP_STREAM_HAS_COMPLETED);
}
if (stream->base.on_metrics) {
stream->base.on_metrics(&stream->base, &stream->base.metrics, stream->base.user_data);
}
/* Invoke callback and clean up stream. */
if (stream->base.on_complete) {
stream->base.on_complete(&stream->base, error_code, stream->base.user_data);
}
aws_http_stream_release(&stream->base);
}
static void s_add_time_measurement_to_stats(uint64_t start_ns, uint64_t end_ns, uint64_t *output_ms) {
if (end_ns > start_ns) {
*output_ms += aws_timestamp_convert(end_ns - start_ns, AWS_TIMESTAMP_NANOS, AWS_TIMESTAMP_MILLIS, NULL);
}
}
static void s_set_outgoing_stream_ptr(
struct aws_h1_connection *connection,
struct aws_h1_stream *next_outgoing_stream) {
struct aws_h1_stream *prev = connection->thread_data.outgoing_stream;
uint64_t now_ns = 0;
aws_channel_current_clock_time(connection->base.channel_slot->channel, &now_ns);
if (prev == NULL && next_outgoing_stream != NULL) {
/* transition from nothing to write -> something to write */
connection->thread_data.outgoing_stream_timestamp_ns = now_ns;
} else if (prev != NULL && next_outgoing_stream == NULL) {
/* transition from something to write -> nothing to write */
s_add_time_measurement_to_stats(
connection->thread_data.outgoing_stream_timestamp_ns,
now_ns,
&connection->thread_data.stats.pending_outgoing_stream_ms);
}
connection->thread_data.outgoing_stream = next_outgoing_stream;
}
static void s_set_incoming_stream_ptr(
struct aws_h1_connection *connection,
struct aws_h1_stream *next_incoming_stream) {
struct aws_h1_stream *prev = connection->thread_data.incoming_stream;
uint64_t now_ns = 0;
aws_channel_current_clock_time(connection->base.channel_slot->channel, &now_ns);
if (prev == NULL && next_incoming_stream != NULL) {
/* transition from nothing to read -> something to read */
connection->thread_data.incoming_stream_timestamp_ns = now_ns;
} else if (prev != NULL && next_incoming_stream == NULL) {
/* transition from something to read -> nothing to read */
s_add_time_measurement_to_stats(
connection->thread_data.incoming_stream_timestamp_ns,
now_ns,
&connection->thread_data.stats.pending_incoming_stream_ms);
}
connection->thread_data.incoming_stream = next_incoming_stream;
}
/**
* Ensure `incoming_stream` is pointing at the correct stream, and update state if it changes.
*/
static void s_client_update_incoming_stream_ptr(struct aws_h1_connection *connection) {
struct aws_linked_list *list = &connection->thread_data.stream_list;
struct aws_h1_stream *desired;
if (connection->thread_data.is_reading_stopped) {
desired = NULL;
} else if (aws_linked_list_empty(list)) {
desired = NULL;
} else {
desired = AWS_CONTAINER_OF(aws_linked_list_begin(list), struct aws_h1_stream, node);
}
if (connection->thread_data.incoming_stream == desired) {
return;
}
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Current incoming stream is now %p.",
(void *)&connection->base,
desired ? (void *)&desired->base : NULL);
s_set_incoming_stream_ptr(connection, desired);
}
static void s_http_stream_response_first_byte_timeout_task(
struct aws_task *task,
void *arg,
enum aws_task_status status) {
(void)task;
struct aws_h1_stream *stream = arg;
struct aws_http_connection *connection_base = stream->base.owning_connection;
/* zero-out task to indicate that it's no longer scheduled */
AWS_ZERO_STRUCT(stream->base.client_data->response_first_byte_timeout_task);
if (status == AWS_TASK_STATUS_CANCELED) {
return;
}
struct aws_h1_connection *connection = AWS_CONTAINER_OF(connection_base, struct aws_h1_connection, base);
/* Timeout happened, close the connection */
uint64_t response_first_byte_timeout_ms = stream->base.client_data->response_first_byte_timeout_ms == 0
? connection_base->client_data->response_first_byte_timeout_ms
: stream->base.client_data->response_first_byte_timeout_ms;
AWS_LOGF_INFO(
AWS_LS_HTTP_CONNECTION,
"id=%p: Closing connection as timeout after request sent to the first byte received happened. "
"response_first_byte_timeout_ms is %" PRIu64 ".",
(void *)connection_base,
response_first_byte_timeout_ms);
/* Don't stop reading/writing immediately, let that happen naturally during the channel shutdown process. */
s_stop(
connection,
false /*stop_reading*/,
false /*stop_writing*/,
true /*schedule_shutdown*/,
AWS_ERROR_HTTP_RESPONSE_FIRST_BYTE_TIMEOUT);
}
static void s_set_outgoing_message_done(struct aws_h1_stream *stream) {
struct aws_http_connection *connection = stream->base.owning_connection;
struct aws_channel *channel = aws_http_connection_get_channel(connection);
AWS_ASSERT(aws_channel_thread_is_callers_thread(channel));
if (stream->is_outgoing_message_done) {
/* Already did the job */
return;
}
stream->is_outgoing_message_done = true;
AWS_ASSERT(stream->base.metrics.send_end_timestamp_ns == -1);
aws_high_res_clock_get_ticks((uint64_t *)&stream->base.metrics.send_end_timestamp_ns);
AWS_ASSERT(stream->base.metrics.send_start_timestamp_ns != -1);
AWS_ASSERT(stream->base.metrics.send_end_timestamp_ns >= stream->base.metrics.send_start_timestamp_ns);
stream->base.metrics.sending_duration_ns =
stream->base.metrics.send_end_timestamp_ns - stream->base.metrics.send_start_timestamp_ns;
if (stream->base.metrics.receive_start_timestamp_ns == -1) {
/* We haven't receive any message, schedule the response timeout task */
uint64_t response_first_byte_timeout_ms = 0;
if (stream->base.client_data != NULL && connection->client_data != NULL) {
response_first_byte_timeout_ms = stream->base.client_data->response_first_byte_timeout_ms == 0
? connection->client_data->response_first_byte_timeout_ms
: stream->base.client_data->response_first_byte_timeout_ms;
}
if (response_first_byte_timeout_ms != 0) {
/* The task should not be initialized before. */
AWS_ASSERT(stream->base.client_data->response_first_byte_timeout_task.fn == NULL);
aws_task_init(
&stream->base.client_data->response_first_byte_timeout_task,
s_http_stream_response_first_byte_timeout_task,
stream,
"http_stream_response_first_byte_timeout_task");
uint64_t now_ns = 0;
aws_channel_current_clock_time(channel, &now_ns);
struct aws_event_loop *connection_loop = aws_channel_get_event_loop(channel);
aws_event_loop_schedule_task_future(
connection_loop,
&stream->base.client_data->response_first_byte_timeout_task,
now_ns + aws_timestamp_convert(
response_first_byte_timeout_ms, AWS_TIMESTAMP_MILLIS, AWS_TIMESTAMP_NANOS, NULL));
}
}
}
/**
* If necessary, update `outgoing_stream` so it is pointing at a stream
* with data to send, or NULL if all streams are done sending data.
*
* Called from event-loop thread.
* This function has lots of side effects.
*/
static struct aws_h1_stream *s_update_outgoing_stream_ptr(struct aws_h1_connection *connection) {
struct aws_h1_stream *current = connection->thread_data.outgoing_stream;
bool current_changed = false;
int err;
/* If current stream is done sending data... */
if (current && !aws_h1_encoder_is_message_in_progress(&connection->thread_data.encoder)) {
s_set_outgoing_message_done(current);
/* RFC-7230 section 6.6: Tear-down.
* If this was the final stream, don't allows any further streams to be sent */
if (current->is_final_stream) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Done sending final stream, no further streams will be sent.",
(void *)&connection->base);
s_stop(
connection,
false /*stop_reading*/,
true /*stop_writing*/,
false /*schedule_shutdown*/,
AWS_ERROR_SUCCESS);
}
/* If it's also done receiving data, then it's complete! */
if (current->is_incoming_message_done) {
/* Only 1st stream in list could finish receiving before it finished sending */
AWS_ASSERT(¤t->node == aws_linked_list_begin(&connection->thread_data.stream_list));
/* This removes stream from list */
s_stream_complete(current, AWS_ERROR_SUCCESS);
}
current = NULL;
current_changed = true;
}
/* If current stream is NULL, look for more work. */
if (!current && !connection->thread_data.is_writing_stopped) {
/* Look for next stream we can work on. */
for (struct aws_linked_list_node *node = aws_linked_list_begin(&connection->thread_data.stream_list);
node != aws_linked_list_end(&connection->thread_data.stream_list);
node = aws_linked_list_next(node)) {
struct aws_h1_stream *stream = AWS_CONTAINER_OF(node, struct aws_h1_stream, node);
/* If we already sent this stream's data, keep looking... */
if (stream->is_outgoing_message_done) {
continue;
}
/* STOP if we're a server, and this stream's response isn't ready to send.
* It's not like we can skip this and start on the next stream because responses must be sent in order.
* Don't need a check like this for clients because their streams always start with data to send. */
if (connection->base.server_data && !stream->thread_data.has_outgoing_response) {
break;
}
/* We found a stream to work on! */
current = stream;
current_changed = true;
break;
}
}
/* Update current incoming and outgoing streams. */
if (current_changed) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Current outgoing stream is now %p.",
(void *)&connection->base,
current ? (void *)¤t->base : NULL);
s_set_outgoing_stream_ptr(connection, current);
if (current) {
AWS_ASSERT(current->base.metrics.send_start_timestamp_ns == -1);
aws_high_res_clock_get_ticks((uint64_t *)¤t->base.metrics.send_start_timestamp_ns);
err = aws_h1_encoder_start_message(
&connection->thread_data.encoder, ¤t->encoder_message, ¤t->base);
(void)err;
AWS_ASSERT(connection->thread_data.encoder.state == AWS_H1_ENCODER_STATE_INIT);
AWS_ASSERT(!err);
}
/* incoming_stream update is only for client */
if (connection->base.client_data) {
s_client_update_incoming_stream_ptr(connection);
}
}
return current;
}
/* Runs after an aws_io_message containing HTTP has completed (written to the network, or failed).
* This does NOT run after switching protocols, when we're dumbly forwarding aws_io_messages
* as a midchannel handler. */
static void s_on_channel_write_complete(
struct aws_channel *channel,
struct aws_io_message *message,
int err_code,
void *user_data) {
(void)message;
struct aws_h1_connection *connection = user_data;
AWS_ASSERT(connection->thread_data.is_outgoing_stream_task_active);
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
if (err_code) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Message did not write to network, error %d (%s)",
(void *)&connection->base,
err_code,
aws_error_name(err_code));
s_shutdown_due_to_error(connection, err_code);
return;
}
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Message finished writing to network. Rescheduling outgoing stream task.",
(void *)&connection->base);
/* To avoid wasting memory, we only want ONE of our written aws_io_messages in the channel at a time.
* Therefore, we wait until it's written to the network before trying to send another
* by running the outgoing-stream-task again.
*
* We also want to share the network with other channels.
* Therefore, when the write completes, we SCHEDULE the outgoing-stream-task
* to run again instead of calling the function directly.
* This way, if the message completes synchronously,
* we're not hogging the network by writing message after message in a tight loop */
aws_channel_schedule_task_now(channel, &connection->outgoing_stream_task);
}
static void s_outgoing_stream_task(struct aws_channel_task *task, void *arg, enum aws_task_status status) {
(void)task;
if (status != AWS_TASK_STATUS_RUN_READY) {
return;
}
struct aws_h1_connection *connection = arg;
AWS_ASSERT(connection->thread_data.is_outgoing_stream_task_active);
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
s_write_outgoing_stream(connection, false /*first_try*/);
}
void aws_h1_connection_try_write_outgoing_stream(struct aws_h1_connection *connection) {
AWS_PRECONDITION(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
if (connection->thread_data.is_outgoing_stream_task_active) {
/* Task is already active */
return;
}
connection->thread_data.is_outgoing_stream_task_active = true;
s_write_outgoing_stream(connection, true /*first_try*/);
}
/* Do the actual work of the outgoing-stream-task */
static void s_write_outgoing_stream(struct aws_h1_connection *connection, bool first_try) {
AWS_PRECONDITION(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
AWS_PRECONDITION(connection->thread_data.is_outgoing_stream_task_active);
/* Just stop if we're no longer writing stream data */
if (connection->thread_data.is_writing_stopped || connection->thread_data.has_switched_protocols) {
return;
}
/* Determine whether we have data available to send, and end task immediately if there's not.
* The outgoing stream task will be kicked off again when user adds more data (new stream, new chunk, etc) */
struct aws_h1_stream *outgoing_stream = s_update_outgoing_stream_ptr(connection);
bool waiting_for_chunks = aws_h1_encoder_is_waiting_for_chunks(&connection->thread_data.encoder);
if (!outgoing_stream || waiting_for_chunks) {
if (!first_try) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Outgoing stream task stopped. outgoing_stream=%p waiting_for_chunks:%d",
(void *)&connection->base,
outgoing_stream ? (void *)&outgoing_stream->base : NULL,
waiting_for_chunks);
}
connection->thread_data.is_outgoing_stream_task_active = false;
return;
}
if (first_try) {
AWS_LOGF_TRACE(AWS_LS_HTTP_CONNECTION, "id=%p: Outgoing stream task has begun.", (void *)&connection->base);
}
struct aws_io_message *msg = aws_channel_slot_acquire_max_message_for_write(connection->base.channel_slot);
if (!msg) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to acquire message from pool, error %d (%s). Closing connection.",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
goto error;
}
/* Set up callback so we can send another message when this one completes */
msg->on_completion = s_on_channel_write_complete;
msg->user_data = connection;
/*
* Fill message data from the outgoing stream.
* Note that we might be resuming work on a stream from a previous run of this task.
*/
if (AWS_OP_SUCCESS != aws_h1_encoder_process(&connection->thread_data.encoder, &msg->message_data)) {
/* Error sending data, abandon ship */
goto error;
}
if (msg->message_data.len > 0) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Outgoing stream task is sending message of size %zu.",
(void *)&connection->base,
msg->message_data.len);
if (aws_channel_slot_send_message(connection->base.channel_slot, msg, AWS_CHANNEL_DIR_WRITE)) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to send message in write direction, error %d (%s). Closing connection.",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
goto error;
}
} else {
/* If message is empty, warn that no work is being done
* and reschedule the task to try again next tick.
* It's likely that body isn't ready, so body streaming function has no data to write yet.
* If this scenario turns out to be common we should implement a "pause" feature. */
AWS_LOGF_WARN(
AWS_LS_HTTP_CONNECTION,
"id=%p: Current outgoing stream %p sent no data, will try again next tick.",
(void *)&connection->base,
outgoing_stream ? (void *)&outgoing_stream->base : NULL);
aws_mem_release(msg->allocator, msg);
aws_channel_schedule_task_now(connection->base.channel_slot->channel, &connection->outgoing_stream_task);
}
return;
error:
if (msg) {
aws_mem_release(msg->allocator, msg);
}
s_shutdown_due_to_error(connection, aws_last_error());
}
static int s_decoder_on_request(
enum aws_http_method method_enum,
const struct aws_byte_cursor *method_str,
const struct aws_byte_cursor *uri,
void *user_data) {
struct aws_h1_connection *connection = user_data;
struct aws_h1_stream *incoming_stream = connection->thread_data.incoming_stream;
AWS_FATAL_ASSERT(connection->thread_data.incoming_stream->base.server_data); /* Request but I'm a client?!?!? */
AWS_ASSERT(incoming_stream->base.server_data->request_method_str.len == 0);
AWS_ASSERT(incoming_stream->base.server_data->request_path.len == 0);
AWS_LOGF_TRACE(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming request: method=" PRInSTR " uri=" PRInSTR,
(void *)&incoming_stream->base,
AWS_BYTE_CURSOR_PRI(*method_str),
AWS_BYTE_CURSOR_PRI(*uri));
/* Copy strings to internal buffer */
struct aws_byte_buf *storage_buf = &incoming_stream->incoming_storage_buf;
AWS_ASSERT(storage_buf->capacity == 0);
size_t storage_size = 0;
int err = aws_add_size_checked(uri->len, method_str->len, &storage_size);
if (err) {
goto error;
}
err = aws_byte_buf_init(storage_buf, incoming_stream->base.alloc, storage_size);
if (err) {
goto error;
}
aws_byte_buf_write_from_whole_cursor(storage_buf, *method_str);
incoming_stream->base.server_data->request_method_str = aws_byte_cursor_from_buf(storage_buf);
aws_byte_buf_write_from_whole_cursor(storage_buf, *uri);
incoming_stream->base.server_data->request_path = aws_byte_cursor_from_buf(storage_buf);
aws_byte_cursor_advance(&incoming_stream->base.server_data->request_path, storage_buf->len - uri->len);
incoming_stream->base.request_method = method_enum;
/* No user callbacks, so we're not checking for shutdown */
return AWS_OP_SUCCESS;
error:
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to process new incoming request, error %d (%s).",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
static int s_decoder_on_response(int status_code, void *user_data) {
struct aws_h1_connection *connection = user_data;
AWS_FATAL_ASSERT(connection->thread_data.incoming_stream->base.client_data); /* Response but I'm a server?!?!? */
AWS_LOGF_TRACE(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming response status: %d (%s).",
(void *)&connection->thread_data.incoming_stream->base,
status_code,
aws_http_status_text(status_code));
connection->thread_data.incoming_stream->base.client_data->response_status = status_code;
/* No user callbacks, so we're not checking for shutdown */
return AWS_OP_SUCCESS;
}
static int s_decoder_on_header(const struct aws_h1_decoded_header *header, void *user_data) {
struct aws_h1_connection *connection = user_data;
struct aws_h1_stream *incoming_stream = connection->thread_data.incoming_stream;
AWS_LOGF_TRACE(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming header: " PRInSTR ": " PRInSTR,
(void *)&incoming_stream->base,
AWS_BYTE_CURSOR_PRI(header->name_data),
AWS_BYTE_CURSOR_PRI(header->value_data));
enum aws_http_header_block header_block =
aws_h1_decoder_get_header_block(connection->thread_data.incoming_stream_decoder);
/* RFC-7230 section 6.1.
* "Connection: close" header signals that a connection will not persist after the current request/response */
if (header->name == AWS_HTTP_HEADER_CONNECTION) {
/* Certain L7 proxies send a connection close header on a 200/OK response to a CONNECT request. This is nutty
* behavior, but the obviously desired behavior on a 200 CONNECT response is to leave the connection open
* for the tunneling. */
bool ignore_connection_close =
incoming_stream->base.request_method == AWS_HTTP_METHOD_CONNECT && incoming_stream->base.client_data &&
incoming_stream->base.client_data->response_status == AWS_HTTP_STATUS_CODE_200_OK;
if (!ignore_connection_close && aws_byte_cursor_eq_c_str_ignore_case(&header->value_data, "close")) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_STREAM,
"id=%p: Received 'Connection: close' header. This will be the final stream on this connection.",
(void *)&incoming_stream->base);
incoming_stream->is_final_stream = true;
{ /* BEGIN CRITICAL SECTION */
aws_h1_connection_lock_synced_data(connection);
connection->synced_data.new_stream_error_code = AWS_ERROR_HTTP_CONNECTION_CLOSED;
aws_h1_connection_unlock_synced_data(connection);
} /* END CRITICAL SECTION */
if (connection->base.client_data) {
/**
* RFC-9112 section 9.6.
* A client that receives a "close" connection option MUST cease sending
* requests on that connection and close the connection after reading the
* response message containing the "close" connection option.
*
* Mark the stream's outgoing message as complete,
* so that we stop sending, and stop waiting for it to finish sending.
**/
if (!incoming_stream->is_outgoing_message_done) {
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Received 'Connection: close' header, no more request data will be sent.",
(void *)&incoming_stream->base);
s_set_outgoing_message_done(incoming_stream);
}
/* Stop writing right now.
* Shutdown will be scheduled after we finishing parsing the response */
s_stop(
connection,
false /*stop_reading*/,
true /*stop_writing*/,
false /*schedule_shutdown*/,
AWS_ERROR_SUCCESS);
}
}
}
if (incoming_stream->base.on_incoming_headers) {
struct aws_http_header deliver = {
.name = header->name_data,
.value = header->value_data,
};
int err = incoming_stream->base.on_incoming_headers(
&incoming_stream->base, header_block, &deliver, 1, incoming_stream->base.user_data);
if (err) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming header callback raised error %d (%s).",
(void *)&incoming_stream->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
}
return AWS_OP_SUCCESS;
}
static int s_mark_head_done(struct aws_h1_stream *incoming_stream) {
/* Bail out if we've already done this */
if (incoming_stream->is_incoming_head_done) {
return AWS_OP_SUCCESS;
}
struct aws_h1_connection *connection =
AWS_CONTAINER_OF(incoming_stream->base.owning_connection, struct aws_h1_connection, base);
enum aws_http_header_block header_block =
aws_h1_decoder_get_header_block(connection->thread_data.incoming_stream_decoder);
if (header_block == AWS_HTTP_HEADER_BLOCK_MAIN) {
AWS_LOGF_TRACE(AWS_LS_HTTP_STREAM, "id=%p: Main header block done.", (void *)&incoming_stream->base);
incoming_stream->is_incoming_head_done = true;
} else if (header_block == AWS_HTTP_HEADER_BLOCK_INFORMATIONAL) {
AWS_LOGF_TRACE(AWS_LS_HTTP_STREAM, "id=%p: Informational header block done.", (void *)&incoming_stream->base);
/* Only clients can receive informational headers.
* Check whether we're switching protocols */
if (incoming_stream->base.client_data->response_status == AWS_HTTP_STATUS_CODE_101_SWITCHING_PROTOCOLS) {
if (s_aws_http1_switch_protocols(connection)) {
return AWS_OP_ERR;
}
}
}
/* Invoke user cb */
if (incoming_stream->base.on_incoming_header_block_done) {
int err = incoming_stream->base.on_incoming_header_block_done(
&incoming_stream->base, header_block, incoming_stream->base.user_data);
if (err) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming-header-block-done callback raised error %d (%s).",
(void *)&incoming_stream->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
}
return AWS_OP_SUCCESS;
}
static int s_decoder_on_body(const struct aws_byte_cursor *data, bool finished, void *user_data) {
(void)finished;
struct aws_h1_connection *connection = user_data;
struct aws_h1_stream *incoming_stream = connection->thread_data.incoming_stream;
AWS_ASSERT(incoming_stream);
int err = s_mark_head_done(incoming_stream);
if (err) {
return AWS_OP_ERR;
}
/* No need to invoke callback for 0-length data */
if (data->len == 0) {
return AWS_OP_SUCCESS;
}
AWS_LOGF_TRACE(
AWS_LS_HTTP_STREAM, "id=%p: Incoming body: %zu bytes received.", (void *)&incoming_stream->base, data->len);
if (connection->base.stream_manual_window_management) {
/* Let stream window shrink by amount of body data received */
if (data->len > incoming_stream->thread_data.stream_window) {
/* This error shouldn't be possible, but it's all complicated, so do runtime check to be safe. */
AWS_LOGF_ERROR(
AWS_LS_HTTP_STREAM,
"id=%p: Internal error. Data exceeds HTTP-stream's window.",
(void *)&incoming_stream->base);
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
incoming_stream->thread_data.stream_window -= data->len;
if (incoming_stream->thread_data.stream_window == 0) {
AWS_LOGF_DEBUG(
AWS_LS_HTTP_STREAM,
"id=%p: Flow-control window has reached 0. No more data can be received until window is updated.",
(void *)&incoming_stream->base);
}
}
if (incoming_stream->base.on_incoming_body) {
err = incoming_stream->base.on_incoming_body(&incoming_stream->base, data, incoming_stream->base.user_data);
if (err) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming body callback raised error %d (%s).",
(void *)&incoming_stream->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
}
return AWS_OP_SUCCESS;
}
static int s_decoder_on_done(void *user_data) {
struct aws_h1_connection *connection = user_data;
struct aws_h1_stream *incoming_stream = connection->thread_data.incoming_stream;
AWS_ASSERT(incoming_stream);
/* Ensure head was marked done */
int err = s_mark_head_done(incoming_stream);
if (err) {
return AWS_OP_ERR;
}
/* If it is a informational response, we stop here, keep waiting for new response */
enum aws_http_header_block header_block =
aws_h1_decoder_get_header_block(connection->thread_data.incoming_stream_decoder);
if (header_block == AWS_HTTP_HEADER_BLOCK_INFORMATIONAL) {
return AWS_OP_SUCCESS;
}
/* Otherwise the incoming stream is finished decoding and we will update it if needed */
incoming_stream->is_incoming_message_done = true;
aws_high_res_clock_get_ticks((uint64_t *)&incoming_stream->base.metrics.receive_end_timestamp_ns);
AWS_ASSERT(incoming_stream->base.metrics.receive_start_timestamp_ns != -1);
AWS_ASSERT(
incoming_stream->base.metrics.receive_end_timestamp_ns >=
incoming_stream->base.metrics.receive_start_timestamp_ns);
incoming_stream->base.metrics.receiving_duration_ns = incoming_stream->base.metrics.receive_end_timestamp_ns -
incoming_stream->base.metrics.receive_start_timestamp_ns;
/* RFC-7230 section 6.6
* After reading the final message, the connection must not read any more */
if (incoming_stream->is_final_stream) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Done reading final stream, no further streams will be read.",
(void *)&connection->base);
s_stop(
connection, true /*stop_reading*/, false /*stop_writing*/, false /*schedule_shutdown*/, AWS_ERROR_SUCCESS);
}
if (connection->base.server_data) {
/* Server side */
aws_http_on_incoming_request_done_fn *on_request_done = incoming_stream->base.server_data->on_request_done;
if (on_request_done) {
err = on_request_done(&incoming_stream->base, incoming_stream->base.user_data);
if (err) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_STREAM,
"id=%p: Incoming request done callback raised error %d (%s).",
(void *)&incoming_stream->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
}
if (incoming_stream->is_outgoing_message_done) {
AWS_ASSERT(&incoming_stream->node == aws_linked_list_begin(&connection->thread_data.stream_list));
s_stream_complete(incoming_stream, AWS_ERROR_SUCCESS);
}
s_set_incoming_stream_ptr(connection, NULL);
} else if (incoming_stream->is_outgoing_message_done) {
/* Client side */
AWS_ASSERT(&incoming_stream->node == aws_linked_list_begin(&connection->thread_data.stream_list));
s_stream_complete(incoming_stream, AWS_ERROR_SUCCESS);
s_client_update_incoming_stream_ptr(connection);
}
/* Report success even if user's on_complete() callback shuts down on the connection.
* We don't want it to look like something went wrong while decoding.
* The decode() function returns after each message completes,
* and we won't call decode() again if the connection has been shut down */
return AWS_OP_SUCCESS;
}
/* Common new() logic for server & client */
static struct aws_h1_connection *s_connection_new(
struct aws_allocator *alloc,
bool manual_window_management,
size_t initial_window_size,
const struct aws_http1_connection_options *http1_options,
bool server) {
struct aws_h1_connection *connection = aws_mem_calloc(alloc, 1, sizeof(struct aws_h1_connection));
if (!connection) {
goto error_connection_alloc;
}
connection->base.vtable = &s_h1_connection_vtable;
connection->base.alloc = alloc;
connection->base.channel_handler.vtable = &s_h1_connection_vtable.channel_handler_vtable;
connection->base.channel_handler.alloc = alloc;
connection->base.channel_handler.impl = connection;
connection->base.http_version = AWS_HTTP_VERSION_1_1;
connection->base.stream_manual_window_management = manual_window_management;
/* Init the next stream id (server must use even ids, client odd [RFC 7540 5.1.1])*/
connection->base.next_stream_id = server ? 2 : 1;
/* 1 refcount for user */
aws_atomic_init_int(&connection->base.refcount, 1);
if (manual_window_management) {
connection->initial_stream_window_size = initial_window_size;
if (http1_options->read_buffer_capacity > 0) {
connection->thread_data.read_buffer.capacity = http1_options->read_buffer_capacity;
} else {
/* User did not set capacity, choose something reasonable based on initial_window_size */
/* NOTE: These values are currently guesses, we should test to find good values */
const size_t clamp_min = aws_min_size(g_aws_channel_max_fragment_size * 4, /*256KB*/ 256 * 1024);
const size_t clamp_max = /*1MB*/ 1 * 1024 * 1024;
connection->thread_data.read_buffer.capacity =
aws_max_size(clamp_min, aws_min_size(clamp_max, initial_window_size));
}
connection->thread_data.connection_window = connection->thread_data.read_buffer.capacity;
} else {
/* No backpressure, keep connection window at SIZE_MAX */
connection->initial_stream_window_size = SIZE_MAX;
connection->thread_data.read_buffer.capacity = SIZE_MAX;
connection->thread_data.connection_window = SIZE_MAX;
}
aws_h1_encoder_init(&connection->thread_data.encoder, alloc);
aws_channel_task_init(
&connection->outgoing_stream_task, s_outgoing_stream_task, connection, "http1_connection_outgoing_stream");
aws_channel_task_init(
&connection->cross_thread_work_task,
s_cross_thread_work_task,
connection,
"http1_connection_cross_thread_work");
aws_linked_list_init(&connection->thread_data.stream_list);
aws_linked_list_init(&connection->thread_data.read_buffer.messages);
aws_crt_statistics_http1_channel_init(&connection->thread_data.stats);
int err = aws_mutex_init(&connection->synced_data.lock);
if (err) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"static: Failed to initialize mutex, error %d (%s).",
aws_last_error(),
aws_error_name(aws_last_error()));
goto error_mutex;
}
aws_linked_list_init(&connection->synced_data.new_client_stream_list);
connection->synced_data.is_open = true;
struct aws_h1_decoder_params options = {
.alloc = alloc,
.is_decoding_requests = server,
.user_data = connection,
.vtable = s_h1_decoder_vtable,
.scratch_space_initial_size = DECODER_INITIAL_SCRATCH_SIZE,
};
connection->thread_data.incoming_stream_decoder = aws_h1_decoder_new(&options);
if (!connection->thread_data.incoming_stream_decoder) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"static: Failed to create decoder, error %d (%s).",
aws_last_error(),
aws_error_name(aws_last_error()));
goto error_decoder;
}
return connection;
error_decoder:
aws_mutex_clean_up(&connection->synced_data.lock);
error_mutex:
aws_mem_release(alloc, connection);
error_connection_alloc:
return NULL;
}
struct aws_http_connection *aws_http_connection_new_http1_1_server(
struct aws_allocator *allocator,
bool manual_window_management,
size_t initial_window_size,
const struct aws_http1_connection_options *http1_options) {
struct aws_h1_connection *connection =
s_connection_new(allocator, manual_window_management, initial_window_size, http1_options, true /*is_server*/);
if (!connection) {
return NULL;
}
connection->base.server_data = &connection->base.client_or_server_data.server;
return &connection->base;
}
struct aws_http_connection *aws_http_connection_new_http1_1_client(
struct aws_allocator *allocator,
bool manual_window_management,
size_t initial_window_size,
const struct aws_http1_connection_options *http1_options) {
struct aws_h1_connection *connection =
s_connection_new(allocator, manual_window_management, initial_window_size, http1_options, false /*is_server*/);
if (!connection) {
return NULL;
}
connection->base.client_data = &connection->base.client_or_server_data.client;
return &connection->base;
}
static void s_handler_destroy(struct aws_channel_handler *handler) {
struct aws_h1_connection *connection = handler->impl;
AWS_LOGF_TRACE(AWS_LS_HTTP_CONNECTION, "id=%p: Destroying connection.", (void *)&connection->base);
AWS_ASSERT(aws_linked_list_empty(&connection->thread_data.stream_list));
AWS_ASSERT(aws_linked_list_empty(&connection->synced_data.new_client_stream_list));
/* Clean up any buffered read messages. */
while (!aws_linked_list_empty(&connection->thread_data.read_buffer.messages)) {
struct aws_linked_list_node *node = aws_linked_list_pop_front(&connection->thread_data.read_buffer.messages);
struct aws_io_message *msg = AWS_CONTAINER_OF(node, struct aws_io_message, queueing_handle);
aws_mem_release(msg->allocator, msg);
}
aws_h1_decoder_destroy(connection->thread_data.incoming_stream_decoder);
aws_h1_encoder_clean_up(&connection->thread_data.encoder);
aws_mutex_clean_up(&connection->synced_data.lock);
aws_mem_release(connection->base.alloc, connection);
}
static void s_handler_installed(struct aws_channel_handler *handler, struct aws_channel_slot *slot) {
struct aws_h1_connection *connection = handler->impl;
connection->base.channel_slot = slot;
/* Acquire a hold on the channel to prevent its destruction until the user has
* given the go-ahead via aws_http_connection_release() */
aws_channel_acquire_hold(slot->channel);
}
/* Try to send the next queued aws_io_message to the downstream handler.
* This can only be called after the connection has switched protocols and becoming a midchannel handler. */
static int s_try_process_next_midchannel_read_message(struct aws_h1_connection *connection, bool *out_stop_processing) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
AWS_ASSERT(connection->thread_data.has_switched_protocols);
AWS_ASSERT(!connection->thread_data.is_reading_stopped);
AWS_ASSERT(!aws_linked_list_empty(&connection->thread_data.read_buffer.messages));
*out_stop_processing = false;
struct aws_io_message *sending_msg = NULL;
if (!connection->base.channel_slot->adj_right) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Connection has switched protocols, but no handler is installed to deal with this data.",
(void *)connection);
return aws_raise_error(AWS_ERROR_HTTP_SWITCHED_PROTOCOLS);
}
size_t downstream_window = aws_channel_slot_downstream_read_window(connection->base.channel_slot);
if (downstream_window == 0) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Downstream window is 0, cannot send switched-protocol message now.",
(void *)&connection->base);
*out_stop_processing = true;
return AWS_OP_SUCCESS;
}
struct aws_linked_list_node *queued_msg_node = aws_linked_list_front(&connection->thread_data.read_buffer.messages);
struct aws_io_message *queued_msg = AWS_CONTAINER_OF(queued_msg_node, struct aws_io_message, queueing_handle);
/* Note that copy_mark is used to mark the progress of partially sent messages. */
AWS_ASSERT(queued_msg->message_data.len > queued_msg->copy_mark);
size_t sending_bytes = aws_min_size(queued_msg->message_data.len - queued_msg->copy_mark, downstream_window);
AWS_ASSERT(connection->thread_data.read_buffer.pending_bytes >= sending_bytes);
connection->thread_data.read_buffer.pending_bytes -= sending_bytes;
/* If we can't send the whole entire queued_msg, copy its data into a new aws_io_message and send that. */
if (sending_bytes != queued_msg->message_data.len) {
sending_msg = aws_channel_acquire_message_from_pool(
connection->base.channel_slot->channel, AWS_IO_MESSAGE_APPLICATION_DATA, sending_bytes);
if (!sending_msg) {
goto error;
}
aws_byte_buf_write(
&sending_msg->message_data, queued_msg->message_data.buffer + queued_msg->copy_mark, sending_bytes);
queued_msg->copy_mark += sending_bytes;
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Sending %zu bytes switched-protocol message to downstream handler, %zu bytes remain.",
(void *)&connection->base,
sending_bytes,
queued_msg->message_data.len - queued_msg->copy_mark);
/* If the last of queued_msg has been copied, it can be deleted now. */
if (queued_msg->copy_mark == queued_msg->message_data.len) {
aws_linked_list_remove(queued_msg_node);
aws_mem_release(queued_msg->allocator, queued_msg);
}
} else {
/* Sending all of queued_msg along. */
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Sending full switched-protocol message of size %zu to downstream handler.",
(void *)&connection->base,
queued_msg->message_data.len);
aws_linked_list_remove(queued_msg_node);
sending_msg = queued_msg;
}
int err = aws_channel_slot_send_message(connection->base.channel_slot, sending_msg, AWS_CHANNEL_DIR_READ);
if (err) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to send message in read direction, error %d (%s).",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
goto error;
}
return AWS_OP_SUCCESS;
error:
if (sending_msg) {
aws_mem_release(sending_msg->allocator, sending_msg);
}
return AWS_OP_ERR;
}
static struct aws_http_stream *s_new_server_request_handler_stream(
const struct aws_http_request_handler_options *options) {
struct aws_h1_connection *connection = AWS_CONTAINER_OF(options->server_connection, struct aws_h1_connection, base);
if (!aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel) ||
!connection->thread_data.can_create_request_handler_stream) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: aws_http_stream_new_server_request_handler() can only be called during incoming request callback.",
(void *)&connection->base);
aws_raise_error(AWS_ERROR_INVALID_STATE);
return NULL;
}
struct aws_h1_stream *stream = aws_h1_stream_new_request_handler(options);
if (!stream) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Failed to create request handler stream, error %d (%s).",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return NULL;
}
/*
* Success!
* Everything beyond this point cannot fail
*/
/* Prevent further streams from being created until it's ok to do so. */
connection->thread_data.can_create_request_handler_stream = false;
/* Stream is waiting for response. */
aws_linked_list_push_back(&connection->thread_data.stream_list, &stream->node);
/* Connection owns stream, and must outlive stream */
aws_http_connection_acquire(&connection->base);
AWS_LOGF_TRACE(
AWS_LS_HTTP_STREAM,
"id=%p: Created request handler stream on server connection=%p",
(void *)&stream->base,
(void *)&connection->base);
return &stream->base;
}
/* Invokes the on_incoming_request callback and returns new stream. */
static struct aws_h1_stream *s_server_invoke_on_incoming_request(struct aws_h1_connection *connection) {
AWS_PRECONDITION(connection->base.server_data);
AWS_PRECONDITION(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
AWS_PRECONDITION(!connection->thread_data.can_create_request_handler_stream);
AWS_PRECONDITION(!connection->thread_data.incoming_stream);
/**
* The user MUST create the new request-handler stream during the on-incoming-request callback.
*/
connection->thread_data.can_create_request_handler_stream = true;
struct aws_http_stream *new_stream =
connection->base.server_data->on_incoming_request(&connection->base, connection->base.user_data);
connection->thread_data.can_create_request_handler_stream = false;
return new_stream ? AWS_CONTAINER_OF(new_stream, struct aws_h1_stream, base) : NULL;
}
static int s_handler_process_read_message(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
struct aws_io_message *message) {
(void)slot;
struct aws_h1_connection *connection = handler->impl;
const size_t message_size = message->message_data.len;
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION, "id=%p: Incoming message of size %zu.", (void *)&connection->base, message_size);
/* Shrink connection window by amount of data received. See comments at variable's
* declaration site on why we use this instead of the official `aws_channel_slot.window_size`. */
if (message_size > connection->thread_data.connection_window) {
/* This error shouldn't be possible, but this is all complicated so check at runtime to be safe. */
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Internal error. Message exceeds connection's window.",
(void *)&connection->base);
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
connection->thread_data.connection_window -= message_size;
/* Push message into queue of buffered messages */
aws_linked_list_push_back(&connection->thread_data.read_buffer.messages, &message->queueing_handle);
connection->thread_data.read_buffer.pending_bytes += message_size;
/* Try to process messages in queue */
aws_h1_connection_try_process_read_messages(connection);
return AWS_OP_SUCCESS;
}
void aws_h1_connection_try_process_read_messages(struct aws_h1_connection *connection) {
/* Protect against this function being called recursively. */
if (connection->thread_data.is_processing_read_messages) {
return;
}
connection->thread_data.is_processing_read_messages = true;
/* Process queued messages */
while (!aws_linked_list_empty(&connection->thread_data.read_buffer.messages)) {
if (connection->thread_data.is_reading_stopped) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Cannot process message because connection is shutting down.",
(void *)&connection->base);
aws_raise_error(AWS_ERROR_HTTP_CONNECTION_CLOSED);
goto shutdown;
}
bool stop_processing = false;
/* When connection has switched protocols, messages are processed very differently.
* We need to do this check in the middle of the normal processing loop,
* in case the switch happens in the middle of processing a message. */
if (connection->thread_data.has_switched_protocols) {
if (s_try_process_next_midchannel_read_message(connection, &stop_processing)) {
goto shutdown;
}
} else {
if (s_try_process_next_stream_read_message(connection, &stop_processing)) {
goto shutdown;
}
}
/* Break out of loop if we can't process any more data */
if (stop_processing) {
break;
}
}
/* Increment connection window, if necessary */
if (s_update_connection_window(connection)) {
goto shutdown;
}
connection->thread_data.is_processing_read_messages = false;
return;
shutdown:
s_shutdown_due_to_error(connection, aws_last_error());
}
/* Try to process the next queued aws_io_message as normal HTTP data for an aws_http_stream.
* This MUST NOT be called if the connection has switched protocols and become a midchannel handler. */
static int s_try_process_next_stream_read_message(struct aws_h1_connection *connection, bool *out_stop_processing) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->base.channel_slot->channel));
AWS_ASSERT(!connection->thread_data.has_switched_protocols);
AWS_ASSERT(!connection->thread_data.is_reading_stopped);
AWS_ASSERT(!aws_linked_list_empty(&connection->thread_data.read_buffer.messages));
*out_stop_processing = false;
/* Ensure that an incoming stream exists to receive the data */
if (!connection->thread_data.incoming_stream) {
if (aws_http_connection_is_client(&connection->base)) {
/* Client side */
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Cannot process message because no requests are currently awaiting response, closing "
"connection.",
(void *)&connection->base);
return aws_raise_error(AWS_ERROR_INVALID_STATE);
} else {
/* Server side.
* Invoke on-incoming-request callback. The user MUST create a new stream from this callback.
* The new stream becomes the current incoming stream */
s_set_incoming_stream_ptr(connection, s_server_invoke_on_incoming_request(connection));
if (!connection->thread_data.incoming_stream) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Incoming request callback failed to provide a new stream, last error %d (%s). "
"Closing connection.",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
}
}
struct aws_h1_stream *incoming_stream = connection->thread_data.incoming_stream;
/* Stop processing if stream's window reaches 0. */
const uint64_t stream_window = incoming_stream->thread_data.stream_window;
if (stream_window == 0) {
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: HTTP-stream's window is 0, cannot process message now.",
(void *)&connection->base);
*out_stop_processing = true;
return AWS_OP_SUCCESS;
}
struct aws_linked_list_node *queued_msg_node = aws_linked_list_front(&connection->thread_data.read_buffer.messages);
struct aws_io_message *queued_msg = AWS_CONTAINER_OF(queued_msg_node, struct aws_io_message, queueing_handle);
/* Note that copy_mark is used to mark the progress of partially decoded messages */
struct aws_byte_cursor message_cursor = aws_byte_cursor_from_buf(&queued_msg->message_data);
aws_byte_cursor_advance(&message_cursor, queued_msg->copy_mark);
/* Don't process more data than the stream's window can accept.
*
* TODO: Let the decoder know about stream-window size so it can stop itself,
* instead of limiting the amount of data we feed into the decoder at a time.
* This would be more optimal, AND avoid an edge-case where the stream-window goes
* to 0 as the body ends, and the connection can't proceed to the trailing headers.
*/
message_cursor.len = (size_t)aws_min_u64(message_cursor.len, stream_window);
const size_t prev_cursor_len = message_cursor.len;
/* Set some decoder state, based on current stream */
aws_h1_decoder_set_logging_id(connection->thread_data.incoming_stream_decoder, incoming_stream);
bool body_headers_ignored = incoming_stream->base.request_method == AWS_HTTP_METHOD_HEAD;
aws_h1_decoder_set_body_headers_ignored(connection->thread_data.incoming_stream_decoder, body_headers_ignored);
if (incoming_stream->base.metrics.receive_start_timestamp_ns == -1) {
/* That's the first time for the stream receives any message */
aws_high_res_clock_get_ticks((uint64_t *)&incoming_stream->base.metrics.receive_start_timestamp_ns);
if (incoming_stream->base.client_data &&
incoming_stream->base.client_data->response_first_byte_timeout_task.fn != NULL) {
/* There is an outstanding response timeout task, as we already received the data, we can cancel it now. We
* are safe to do it as we always on connection thread to schedule the task or cancel it */
struct aws_event_loop *connection_loop = aws_channel_get_event_loop(connection->base.channel_slot->channel);
/* The task will be zeroed out within the call */
aws_event_loop_cancel_task(
connection_loop, &incoming_stream->base.client_data->response_first_byte_timeout_task);
}
}
/* As decoder runs, it invokes the internal s_decoder_X callbacks, which in turn invoke user callbacks.
* The decoder will stop once it hits the end of the request/response OR the end of the message data. */
if (aws_h1_decode(connection->thread_data.incoming_stream_decoder, &message_cursor)) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Message processing failed, error %d (%s). Closing connection.",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
return AWS_OP_ERR;
}
size_t bytes_processed = prev_cursor_len - message_cursor.len;
queued_msg->copy_mark += bytes_processed;
AWS_ASSERT(connection->thread_data.read_buffer.pending_bytes >= bytes_processed);
connection->thread_data.read_buffer.pending_bytes -= bytes_processed;
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Decoded %zu bytes of message, %zu bytes remain.",
(void *)&connection->base,
bytes_processed,
queued_msg->message_data.len - queued_msg->copy_mark);
/* If the last of queued_msg has been processed, it can be deleted now.
* Otherwise, it remains in the queue for further processing later. */
if (queued_msg->copy_mark == queued_msg->message_data.len) {
aws_linked_list_remove(&queued_msg->queueing_handle);
aws_mem_release(queued_msg->allocator, queued_msg);
}
return AWS_OP_SUCCESS;
}
static int s_handler_process_write_message(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
struct aws_io_message *message) {
struct aws_h1_connection *connection = handler->impl;
if (connection->thread_data.is_writing_stopped) {
aws_raise_error(AWS_ERROR_HTTP_CONNECTION_CLOSED);
goto error;
}
if (!connection->thread_data.has_switched_protocols) {
aws_raise_error(AWS_ERROR_INVALID_STATE);
goto error;
}
/* Pass the message right along. */
int err = aws_channel_slot_send_message(slot, message, AWS_CHANNEL_DIR_WRITE);
if (err) {
goto error;
}
return AWS_OP_SUCCESS;
error:
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: Destroying write message without passing it along, error %d (%s)",
(void *)&connection->base,
aws_last_error(),
aws_error_name(aws_last_error()));
if (message->on_completion) {
message->on_completion(connection->base.channel_slot->channel, message, aws_last_error(), message->user_data);
}
aws_mem_release(message->allocator, message);
s_shutdown_due_to_error(connection, aws_last_error());
return AWS_OP_SUCCESS;
}
static int s_handler_increment_read_window(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
size_t size) {
(void)slot;
struct aws_h1_connection *connection = handler->impl;
if (!connection->thread_data.has_switched_protocols) {
AWS_LOGF_ERROR(
AWS_LS_HTTP_CONNECTION,
"id=%p: HTTP connection cannot have a downstream handler without first switching protocols",
(void *)&connection->base);
aws_raise_error(AWS_ERROR_INVALID_STATE);
goto error;
}
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Handler in read direction incremented read window by %zu. Sending queued messages, if any.",
(void *)&connection->base,
size);
/* Send along any queued messages, and increment connection's window if necessary */
aws_h1_connection_try_process_read_messages(connection);
return AWS_OP_SUCCESS;
error:
s_shutdown_due_to_error(connection, aws_last_error());
return AWS_OP_SUCCESS;
}
static int s_handler_shutdown(
struct aws_channel_handler *handler,
struct aws_channel_slot *slot,
enum aws_channel_direction dir,
int error_code,
bool free_scarce_resources_immediately) {
(void)free_scarce_resources_immediately;
struct aws_h1_connection *connection = handler->impl;
AWS_LOGF_TRACE(
AWS_LS_HTTP_CONNECTION,
"id=%p: Channel shutting down in %s direction with error code %d (%s).",
(void *)&connection->base,
(dir == AWS_CHANNEL_DIR_READ) ? "read" : "write",
error_code,
aws_error_name(error_code));
if (dir == AWS_CHANNEL_DIR_READ) {
/* This call ensures that no further streams will be created or worked on. */
s_stop(connection, true /*stop_reading*/, false /*stop_writing*/, false /*schedule_shutdown*/, error_code);
} else /* dir == AWS_CHANNEL_DIR_WRITE */ {
s_stop(connection, false /*stop_reading*/, true /*stop_writing*/, false /*schedule_shutdown*/, error_code);
/* Mark all pending streams as complete. */
int stream_error_code = error_code == AWS_ERROR_SUCCESS ? AWS_ERROR_HTTP_CONNECTION_CLOSED : error_code;
while (!aws_linked_list_empty(&connection->thread_data.stream_list)) {
struct aws_linked_list_node *node = aws_linked_list_front(&connection->thread_data.stream_list);
s_stream_complete(AWS_CONTAINER_OF(node, struct aws_h1_stream, node), stream_error_code);
}
/* It's OK to access synced_data.new_client_stream_list without holding the lock because
* no more streams can be added after s_stop() has been invoked. */
while (!aws_linked_list_empty(&connection->synced_data.new_client_stream_list)) {
struct aws_linked_list_node *node = aws_linked_list_front(&connection->synced_data.new_client_stream_list);
s_stream_complete(AWS_CONTAINER_OF(node, struct aws_h1_stream, node), stream_error_code);
}
}
aws_channel_slot_on_handler_shutdown_complete(slot, dir, error_code, free_scarce_resources_immediately);
return AWS_OP_SUCCESS;
}
static size_t s_handler_initial_window_size(struct aws_channel_handler *handler) {
struct aws_h1_connection *connection = handler->impl;
return connection->thread_data.connection_window;
}
static size_t s_handler_message_overhead(struct aws_channel_handler *handler) {
(void)handler;
return 0;
}
static void s_reset_statistics(struct aws_channel_handler *handler) {
struct aws_h1_connection *connection = handler->impl;
aws_crt_statistics_http1_channel_reset(&connection->thread_data.stats);
}
static void s_pull_up_stats_timestamps(struct aws_h1_connection *connection) {
uint64_t now_ns = 0;
if (aws_channel_current_clock_time(connection->base.channel_slot->channel, &now_ns)) {
return;
}
if (connection->thread_data.outgoing_stream) {
s_add_time_measurement_to_stats(
connection->thread_data.outgoing_stream_timestamp_ns,
now_ns,
&connection->thread_data.stats.pending_outgoing_stream_ms);
connection->thread_data.outgoing_stream_timestamp_ns = now_ns;
connection->thread_data.stats.current_outgoing_stream_id =
aws_http_stream_get_id(&connection->thread_data.outgoing_stream->base);
}
if (connection->thread_data.incoming_stream) {
s_add_time_measurement_to_stats(
connection->thread_data.incoming_stream_timestamp_ns,
now_ns,
&connection->thread_data.stats.pending_incoming_stream_ms);
connection->thread_data.incoming_stream_timestamp_ns = now_ns;
connection->thread_data.stats.current_incoming_stream_id =
aws_http_stream_get_id(&connection->thread_data.incoming_stream->base);
}
}
static void s_gather_statistics(struct aws_channel_handler *handler, struct aws_array_list *stats) {
struct aws_h1_connection *connection = handler->impl;
/* TODO: Need update the way we calculate statistics, to account for user-controlled pauses.
* If user is adding chunks 1 by 1, there can naturally be a gap in the upload.
* If the user lets the stream-window go to zero, there can naturally be a gap in the download. */
s_pull_up_stats_timestamps(connection);
void *stats_base = &connection->thread_data.stats;
aws_array_list_push_back(stats, &stats_base);
}
struct aws_crt_statistics_http1_channel *aws_h1_connection_get_statistics(struct aws_http_connection *connection) {
AWS_ASSERT(aws_channel_thread_is_callers_thread(connection->channel_slot->channel));
struct aws_h1_connection *h1_conn = (void *)connection;
return &h1_conn->thread_data.stats;
}
struct aws_h1_window_stats aws_h1_connection_window_stats(struct aws_http_connection *connection_base) {
struct aws_h1_connection *connection = AWS_CONTAINER_OF(connection_base, struct aws_h1_connection, base);
struct aws_h1_window_stats stats = {
.connection_window = connection->thread_data.connection_window,
.buffer_capacity = connection->thread_data.read_buffer.capacity,
.buffer_pending_bytes = connection->thread_data.read_buffer.pending_bytes,
.recent_window_increments = connection->thread_data.recent_window_increments,
.has_incoming_stream = connection->thread_data.incoming_stream != NULL,
.stream_window = connection->thread_data.incoming_stream
? connection->thread_data.incoming_stream->thread_data.stream_window
: 0,
};
/* Resets each time it's queried */
connection->thread_data.recent_window_increments = 0;
return stats;
}
|