1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/http/private/hpack.h>
#define HPACK_LOGF(level, encoder, text, ...) \
AWS_LOGF_##level(AWS_LS_HTTP_ENCODER, "id=%p [HPACK]: " text, (encoder)->log_id, __VA_ARGS__)
#define HPACK_LOG(level, encoder, text) HPACK_LOGF(level, encoder, "%s", text)
struct aws_huffman_symbol_coder *hpack_get_coder(void);
void aws_hpack_encoder_init(struct aws_hpack_encoder *encoder, struct aws_allocator *allocator, const void *log_id) {
AWS_ZERO_STRUCT(*encoder);
encoder->log_id = log_id;
aws_huffman_encoder_init(&encoder->huffman_encoder, hpack_get_coder());
aws_hpack_context_init(&encoder->context, allocator, AWS_LS_HTTP_ENCODER, log_id);
encoder->dynamic_table_size_update.pending = false;
encoder->dynamic_table_size_update.latest_value = SIZE_MAX;
encoder->dynamic_table_size_update.smallest_value = SIZE_MAX;
}
void aws_hpack_encoder_clean_up(struct aws_hpack_encoder *encoder) {
aws_hpack_context_clean_up(&encoder->context);
AWS_ZERO_STRUCT(*encoder);
}
void aws_hpack_encoder_set_huffman_mode(struct aws_hpack_encoder *encoder, enum aws_hpack_huffman_mode mode) {
encoder->huffman_mode = mode;
}
void aws_hpack_encoder_update_max_table_size(struct aws_hpack_encoder *encoder, uint32_t new_max_size) {
if (!encoder->dynamic_table_size_update.pending) {
encoder->dynamic_table_size_update.pending = true;
}
encoder->dynamic_table_size_update.smallest_value =
aws_min_size(new_max_size, encoder->dynamic_table_size_update.smallest_value);
/* TODO: don't necessarily go as high as possible. The peer said the encoder's
* dynamic table COULD get this big, but it's not required to.
* It's probably not a good idea to let the peer decide how much memory we allocate.
* Not sure how to cap it though... Use a hardcoded number?
* Match whatever SETTINGS_HEADER_TABLE_SIZE this side sends? */
encoder->dynamic_table_size_update.latest_value = new_max_size;
}
/* Return a byte with the N right-most bits masked.
* Ex: 2 -> 00000011 */
static uint8_t s_masked_right_bits_u8(uint8_t num_masked_bits) {
AWS_ASSERT(num_masked_bits <= 8);
const uint8_t cut_bits = 8 - num_masked_bits;
return UINT8_MAX >> cut_bits;
}
/* If buffer isn't big enough, grow it intelligently */
static int s_ensure_space(struct aws_byte_buf *output, size_t required_space) {
size_t available_space = output->capacity - output->len;
if (required_space <= available_space) {
return AWS_OP_SUCCESS;
}
/* Capacity must grow to at least this size */
size_t required_capacity;
if (aws_add_size_checked(output->len, required_space, &required_capacity)) {
return AWS_OP_ERR;
}
/* Prefer to double capacity, but if that's not enough grow to exactly required_capacity */
size_t double_capacity = aws_add_size_saturating(output->capacity, output->capacity);
size_t reserve = aws_max_size(required_capacity, double_capacity);
return aws_byte_buf_reserve(output, reserve);
}
int aws_hpack_encode_integer(
uint64_t integer,
uint8_t starting_bits,
uint8_t prefix_size,
struct aws_byte_buf *output) {
AWS_ASSERT(prefix_size <= 8);
const uint8_t prefix_mask = s_masked_right_bits_u8(prefix_size);
AWS_ASSERT((starting_bits & prefix_mask) == 0);
const size_t original_len = output->len;
if (integer < prefix_mask) {
/* If the integer fits inside the specified number of bits but won't be all 1's, just write it */
/* Just write out the bits we care about */
uint8_t first_byte = starting_bits | (uint8_t)integer;
if (aws_byte_buf_append_byte_dynamic(output, first_byte)) {
goto error;
}
} else {
/* Set all of the bits in the first octet to 1 */
uint8_t first_byte = starting_bits | prefix_mask;
if (aws_byte_buf_append_byte_dynamic(output, first_byte)) {
goto error;
}
integer -= prefix_mask;
const uint64_t hi_57bit_mask = UINT64_MAX - (UINT8_MAX >> 1);
do {
/* Take top 7 bits from the integer */
uint8_t this_octet = integer % 128;
if (integer & hi_57bit_mask) {
/* If there's more after this octet, set the hi bit */
this_octet += 128;
}
if (aws_byte_buf_append_byte_dynamic(output, this_octet)) {
goto error;
}
/* Remove the written bits */
integer >>= 7;
} while (integer);
}
return AWS_OP_SUCCESS;
error:
output->len = original_len;
return AWS_OP_ERR;
}
int aws_hpack_encode_string(
struct aws_hpack_encoder *encoder,
struct aws_byte_cursor to_encode,
struct aws_byte_buf *output) {
AWS_PRECONDITION(encoder);
AWS_PRECONDITION(aws_byte_cursor_is_valid(&to_encode));
AWS_PRECONDITION(output);
const size_t original_len = output->len;
/* Determine length of encoded string (and whether or not to use huffman) */
uint8_t use_huffman;
size_t str_length;
switch (encoder->huffman_mode) {
case AWS_HPACK_HUFFMAN_NEVER:
use_huffman = 0;
str_length = to_encode.len;
break;
case AWS_HPACK_HUFFMAN_ALWAYS:
use_huffman = 1;
str_length = aws_huffman_get_encoded_length(&encoder->huffman_encoder, to_encode);
break;
case AWS_HPACK_HUFFMAN_SMALLEST:
str_length = aws_huffman_get_encoded_length(&encoder->huffman_encoder, to_encode);
if (str_length < to_encode.len) {
use_huffman = 1;
} else {
str_length = to_encode.len;
use_huffman = 0;
}
break;
default:
aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
goto error;
}
/*
* String literals are encoded like so (RFC-7541 5.2):
* H is whether or not data is huffman-encoded.
*
* 0 1 2 3 4 5 6 7
* +---+---+---+---+---+---+---+---+
* | H | String Length (7+) |
* +---+---------------------------+
* | String Data (Length octets) |
* +-------------------------------+
*/
/* Encode string length */
uint8_t starting_bits = use_huffman << 7;
if (aws_hpack_encode_integer(str_length, starting_bits, 7, output)) {
HPACK_LOGF(ERROR, encoder, "Error encoding HPACK integer: %s", aws_error_name(aws_last_error()));
goto error;
}
/* Encode string data */
if (str_length > 0) {
if (use_huffman) {
/* Huffman encoder doesn't grow buffer, so we ensure it's big enough here */
if (s_ensure_space(output, str_length)) {
goto error;
}
if (aws_huffman_encode(&encoder->huffman_encoder, &to_encode, output)) {
HPACK_LOGF(ERROR, encoder, "Error from Huffman encoder: %s", aws_error_name(aws_last_error()));
goto error;
}
} else {
if (aws_byte_buf_append_dynamic(output, &to_encode)) {
goto error;
}
}
}
return AWS_OP_SUCCESS;
error:
output->len = original_len;
aws_huffman_encoder_reset(&encoder->huffman_encoder);
return AWS_OP_ERR;
}
/* All types that HPACK might encode/decode (RFC-7541 6 - Binary Format) */
enum aws_hpack_entry_type {
AWS_HPACK_ENTRY_INDEXED_HEADER_FIELD, /* RFC-7541 6.1 */
AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITH_INCREMENTAL_INDEXING, /* RFC-7541 6.2.1 */
AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITHOUT_INDEXING, /* RFC-7541 6.2.2 */
AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_NEVER_INDEXED, /* RFC-7541 6.2.3 */
AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE, /* RFC-7541 6.3 */
AWS_HPACK_ENTRY_TYPE_COUNT,
};
/**
* First byte each entry type looks like this (RFC-7541 6):
* The "xxxxx" part is the "N-bit prefix" of the entry's first encoded integer.
*
* 1xxxxxxx: Indexed Header Field Representation
* 01xxxxxx: Literal Header Field with Incremental Indexing
* 001xxxxx: Dynamic Table Size Update
* 0001xxxx: Literal Header Field Never Indexed
* 0000xxxx: Literal Header Field without Indexing
*/
static const uint8_t s_hpack_entry_starting_bit_pattern[AWS_HPACK_ENTRY_TYPE_COUNT] = {
[AWS_HPACK_ENTRY_INDEXED_HEADER_FIELD] = 1 << 7,
[AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITH_INCREMENTAL_INDEXING] = 1 << 6,
[AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE] = 1 << 5,
[AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_NEVER_INDEXED] = 1 << 4,
[AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITHOUT_INDEXING] = 0 << 4,
};
static const uint8_t s_hpack_entry_num_prefix_bits[AWS_HPACK_ENTRY_TYPE_COUNT] = {
[AWS_HPACK_ENTRY_INDEXED_HEADER_FIELD] = 7,
[AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITH_INCREMENTAL_INDEXING] = 6,
[AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE] = 5,
[AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_NEVER_INDEXED] = 4,
[AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITHOUT_INDEXING] = 4,
};
static int s_convert_http_compression_to_literal_entry_type(
enum aws_http_header_compression compression,
enum aws_hpack_entry_type *out_entry_type) {
switch (compression) {
case AWS_HTTP_HEADER_COMPRESSION_USE_CACHE:
*out_entry_type = AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITH_INCREMENTAL_INDEXING;
return AWS_OP_SUCCESS;
case AWS_HTTP_HEADER_COMPRESSION_NO_CACHE:
*out_entry_type = AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITHOUT_INDEXING;
return AWS_OP_SUCCESS;
case AWS_HTTP_HEADER_COMPRESSION_NO_FORWARD_CACHE:
*out_entry_type = AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_NEVER_INDEXED;
return AWS_OP_SUCCESS;
}
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
static int s_encode_header_field(
struct aws_hpack_encoder *encoder,
const struct aws_http_header *header,
struct aws_byte_buf *output) {
AWS_PRECONDITION(encoder);
AWS_PRECONDITION(header);
AWS_PRECONDITION(output);
size_t original_len = output->len;
/* Search for header-field in tables */
bool found_indexed_value;
size_t header_index = aws_hpack_find_index(&encoder->context, header, true, &found_indexed_value);
if (header->compression != AWS_HTTP_HEADER_COMPRESSION_USE_CACHE) {
/* If user doesn't want to use indexed value, then don't use it */
found_indexed_value = false;
}
if (header_index && found_indexed_value) {
/* Indexed header field */
const enum aws_hpack_entry_type entry_type = AWS_HPACK_ENTRY_INDEXED_HEADER_FIELD;
/* encode the one index (along with the entry type), and we're done! */
uint8_t starting_bit_pattern = s_hpack_entry_starting_bit_pattern[entry_type];
uint8_t num_prefix_bits = s_hpack_entry_num_prefix_bits[entry_type];
if (aws_hpack_encode_integer(header_index, starting_bit_pattern, num_prefix_bits, output)) {
goto error;
}
return AWS_OP_SUCCESS;
}
/* Else, Literal header field... */
/* determine exactly which type of literal header-field to encode. */
enum aws_hpack_entry_type literal_entry_type = AWS_HPACK_ENTRY_TYPE_COUNT;
if (s_convert_http_compression_to_literal_entry_type(header->compression, &literal_entry_type)) {
goto error;
}
/* the entry type makes up the first few bits of the next integer we encode */
uint8_t starting_bit_pattern = s_hpack_entry_starting_bit_pattern[literal_entry_type];
uint8_t num_prefix_bits = s_hpack_entry_num_prefix_bits[literal_entry_type];
if (header_index) {
/* Literal header field, indexed name */
/* first encode the index of name */
if (aws_hpack_encode_integer(header_index, starting_bit_pattern, num_prefix_bits, output)) {
goto error;
}
} else {
/* Literal header field, new name */
/* first encode index of 0 to indicate that header-name is not indexed */
if (aws_hpack_encode_integer(0, starting_bit_pattern, num_prefix_bits, output)) {
goto error;
}
/* next encode header-name string */
if (aws_hpack_encode_string(encoder, header->name, output)) {
goto error;
}
}
/* then encode header-value string, and we're done encoding! */
if (aws_hpack_encode_string(encoder, header->value, output)) {
goto error;
}
/* if "incremental indexing" type, insert header into the dynamic table. */
if (AWS_HPACK_ENTRY_LITERAL_HEADER_FIELD_WITH_INCREMENTAL_INDEXING == literal_entry_type) {
if (aws_hpack_insert_header(&encoder->context, header)) {
goto error;
}
}
return AWS_OP_SUCCESS;
error:
output->len = original_len;
return AWS_OP_ERR;
}
int aws_hpack_encode_header_block(
struct aws_hpack_encoder *encoder,
const struct aws_http_headers *headers,
struct aws_byte_buf *output) {
/* Encode a dynamic table size update at the beginning of the first header-block
* following the change to the dynamic table size RFC-7541 4.2 */
if (encoder->dynamic_table_size_update.pending) {
if (encoder->dynamic_table_size_update.smallest_value != encoder->dynamic_table_size_update.latest_value) {
size_t smallest_update_value = encoder->dynamic_table_size_update.smallest_value;
HPACK_LOGF(
TRACE, encoder, "Encoding smallest dynamic table size update entry size: %zu", smallest_update_value);
if (aws_hpack_resize_dynamic_table(&encoder->context, smallest_update_value)) {
HPACK_LOGF(ERROR, encoder, "Dynamic table resize failed, size: %zu", smallest_update_value);
return AWS_OP_ERR;
}
uint8_t starting_bit_pattern = s_hpack_entry_starting_bit_pattern[AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE];
uint8_t num_prefix_bits = s_hpack_entry_num_prefix_bits[AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE];
if (aws_hpack_encode_integer(smallest_update_value, starting_bit_pattern, num_prefix_bits, output)) {
HPACK_LOGF(
ERROR,
encoder,
"Integer encoding failed for table size update entry, integer: %zu",
smallest_update_value);
return AWS_OP_ERR;
}
}
size_t last_update_value = encoder->dynamic_table_size_update.latest_value;
HPACK_LOGF(TRACE, encoder, "Encoding last dynamic table size update entry size: %zu", last_update_value);
if (aws_hpack_resize_dynamic_table(&encoder->context, last_update_value)) {
HPACK_LOGF(ERROR, encoder, "Dynamic table resize failed, size: %zu", last_update_value);
return AWS_OP_ERR;
}
uint8_t starting_bit_pattern = s_hpack_entry_starting_bit_pattern[AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE];
uint8_t num_prefix_bits = s_hpack_entry_num_prefix_bits[AWS_HPACK_ENTRY_DYNAMIC_TABLE_RESIZE];
if (aws_hpack_encode_integer(last_update_value, starting_bit_pattern, num_prefix_bits, output)) {
HPACK_LOGF(
ERROR, encoder, "Integer encoding failed for table size update entry, integer: %zu", last_update_value);
return AWS_OP_ERR;
}
encoder->dynamic_table_size_update.pending = false;
encoder->dynamic_table_size_update.latest_value = SIZE_MAX;
encoder->dynamic_table_size_update.smallest_value = SIZE_MAX;
}
const size_t num_headers = aws_http_headers_count(headers);
for (size_t i = 0; i < num_headers; ++i) {
struct aws_http_header header;
aws_http_headers_get_index(headers, i, &header);
if (s_encode_header_field(encoder, &header, output)) {
return AWS_OP_ERR;
}
}
return AWS_OP_SUCCESS;
}
|