1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/io/event_loop.h>
#include <aws/io/logging.h>
#include <aws/cal/cal.h>
#include <aws/common/atomics.h>
#include <aws/common/clock.h>
#include <aws/common/mutex.h>
#include <aws/common/task_scheduler.h>
#include <aws/common/thread.h>
#if defined(__FreeBSD__) || defined(__NetBSD__)
# define __BSD_VISIBLE 1
# include <sys/types.h>
#endif
#include <sys/event.h>
#include <aws/io/io.h>
#include <limits.h>
#include <unistd.h>
static void s_destroy(struct aws_event_loop *event_loop);
static int s_run(struct aws_event_loop *event_loop);
static int s_stop(struct aws_event_loop *event_loop);
static int s_wait_for_stop_completion(struct aws_event_loop *event_loop);
static void s_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task);
static void s_schedule_task_future(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos);
static void s_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task);
static int s_subscribe_to_io_events(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
aws_event_loop_on_event_fn *on_event,
void *user_data);
static int s_unsubscribe_from_io_events(struct aws_event_loop *event_loop, struct aws_io_handle *handle);
static void s_free_io_event_resources(void *user_data);
static bool s_is_event_thread(struct aws_event_loop *event_loop);
static void aws_event_loop_thread(void *user_data);
int aws_open_nonblocking_posix_pipe(int pipe_fds[2]);
enum event_thread_state {
EVENT_THREAD_STATE_READY_TO_RUN,
EVENT_THREAD_STATE_RUNNING,
EVENT_THREAD_STATE_STOPPING,
};
enum pipe_fd_index {
READ_FD,
WRITE_FD,
};
struct kqueue_loop {
/* thread_created_on is the handle to the event loop thread. */
struct aws_thread thread_created_on;
/* thread_joined_to is used by the thread destroying the event loop. */
aws_thread_id_t thread_joined_to;
/* running_thread_id is NULL if the event loop thread is stopped or points-to the thread_id of the thread running
* the event loop (either thread_created_on or thread_joined_to). Atomic because of concurrent writes (e.g.,
* run/stop) and reads (e.g., is_event_loop_thread).
* An aws_thread_id_t variable itself cannot be atomic because it is an opaque type that is platform-dependent. */
struct aws_atomic_var running_thread_id;
int kq_fd; /* kqueue file descriptor */
/* Pipe for signaling to event-thread that cross_thread_data has changed. */
int cross_thread_signal_pipe[2];
/* cross_thread_data holds things that must be communicated across threads.
* When the event-thread is running, the mutex must be locked while anyone touches anything in cross_thread_data.
* If this data is modified outside the thread, the thread is signaled via activity on a pipe. */
struct {
struct aws_mutex mutex;
bool thread_signaled; /* whether thread has been signaled about changes to cross_thread_data */
struct aws_linked_list tasks_to_schedule;
enum event_thread_state state;
} cross_thread_data;
/* thread_data holds things which, when the event-thread is running, may only be touched by the thread */
struct {
struct aws_task_scheduler scheduler;
int connected_handle_count;
/* These variables duplicate ones in cross_thread_data. We move values out while holding the mutex and operate
* on them later */
enum event_thread_state state;
} thread_data;
struct aws_thread_options thread_options;
};
/* Data attached to aws_io_handle while the handle is subscribed to io events */
struct handle_data {
struct aws_io_handle *owner;
struct aws_event_loop *event_loop;
aws_event_loop_on_event_fn *on_event;
void *on_event_user_data;
int events_subscribed; /* aws_io_event_types this handle should be subscribed to */
int events_this_loop; /* aws_io_event_types received during current loop of the event-thread */
enum { HANDLE_STATE_SUBSCRIBING, HANDLE_STATE_SUBSCRIBED, HANDLE_STATE_UNSUBSCRIBED } state;
struct aws_task subscribe_task;
struct aws_task cleanup_task;
};
enum {
DEFAULT_TIMEOUT_SEC = 100, /* Max kevent() timeout per loop of the event-thread */
MAX_EVENTS = 100, /* Max kevents to process per loop of the event-thread */
};
struct aws_event_loop_vtable s_kqueue_vtable = {
.destroy = s_destroy,
.run = s_run,
.stop = s_stop,
.wait_for_stop_completion = s_wait_for_stop_completion,
.schedule_task_now = s_schedule_task_now,
.schedule_task_future = s_schedule_task_future,
.subscribe_to_io_events = s_subscribe_to_io_events,
.cancel_task = s_cancel_task,
.unsubscribe_from_io_events = s_unsubscribe_from_io_events,
.free_io_event_resources = s_free_io_event_resources,
.is_on_callers_thread = s_is_event_thread,
};
struct aws_event_loop *aws_event_loop_new_default_with_options(
struct aws_allocator *alloc,
const struct aws_event_loop_options *options) {
AWS_ASSERT(alloc);
AWS_ASSERT(clock);
AWS_ASSERT(options);
AWS_ASSERT(options->clock);
bool clean_up_event_loop_mem = false;
bool clean_up_event_loop_base = false;
bool clean_up_impl_mem = false;
bool clean_up_thread = false;
bool clean_up_kqueue = false;
bool clean_up_signal_pipe = false;
bool clean_up_signal_kevent = false;
bool clean_up_mutex = false;
struct aws_event_loop *event_loop = aws_mem_acquire(alloc, sizeof(struct aws_event_loop));
if (!event_loop) {
return NULL;
}
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: Initializing edge-triggered kqueue", (void *)event_loop);
clean_up_event_loop_mem = true;
int err = aws_event_loop_init_base(event_loop, alloc, options->clock);
if (err) {
goto clean_up;
}
clean_up_event_loop_base = true;
struct kqueue_loop *impl = aws_mem_calloc(alloc, 1, sizeof(struct kqueue_loop));
if (!impl) {
goto clean_up;
}
if (options->thread_options) {
impl->thread_options = *options->thread_options;
} else {
impl->thread_options = *aws_default_thread_options();
}
/* intialize thread id to NULL. It will be set when the event loop thread starts. */
aws_atomic_init_ptr(&impl->running_thread_id, NULL);
clean_up_impl_mem = true;
err = aws_thread_init(&impl->thread_created_on, alloc);
if (err) {
goto clean_up;
}
clean_up_thread = true;
impl->kq_fd = kqueue();
if (impl->kq_fd == -1) {
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: Failed to open kqueue handle.", (void *)event_loop);
aws_raise_error(AWS_ERROR_SYS_CALL_FAILURE);
goto clean_up;
}
clean_up_kqueue = true;
err = aws_open_nonblocking_posix_pipe(impl->cross_thread_signal_pipe);
if (err) {
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: failed to open pipe handle.", (void *)event_loop);
goto clean_up;
}
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: pipe descriptors read %d, write %d.",
(void *)event_loop,
impl->cross_thread_signal_pipe[READ_FD],
impl->cross_thread_signal_pipe[WRITE_FD]);
clean_up_signal_pipe = true;
/* Set up kevent to handle activity on the cross_thread_signal_pipe */
struct kevent thread_signal_kevent;
EV_SET(
&thread_signal_kevent,
impl->cross_thread_signal_pipe[READ_FD],
EVFILT_READ /*filter*/,
EV_ADD | EV_CLEAR /*flags*/,
0 /*fflags*/,
0 /*data*/,
NULL /*udata*/);
int res = kevent(
impl->kq_fd,
&thread_signal_kevent /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
if (res == -1) {
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: failed to create cross-thread signal kevent.", (void *)event_loop);
aws_raise_error(AWS_ERROR_SYS_CALL_FAILURE);
goto clean_up;
}
clean_up_signal_kevent = true;
err = aws_mutex_init(&impl->cross_thread_data.mutex);
if (err) {
goto clean_up;
}
clean_up_mutex = true;
impl->cross_thread_data.thread_signaled = false;
aws_linked_list_init(&impl->cross_thread_data.tasks_to_schedule);
impl->cross_thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
err = aws_task_scheduler_init(&impl->thread_data.scheduler, alloc);
if (err) {
goto clean_up;
}
impl->thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
event_loop->impl_data = impl;
event_loop->vtable = &s_kqueue_vtable;
/* success */
return event_loop;
clean_up:
if (clean_up_mutex) {
aws_mutex_clean_up(&impl->cross_thread_data.mutex);
}
if (clean_up_signal_kevent) {
thread_signal_kevent.flags = EV_DELETE;
kevent(
impl->kq_fd,
&thread_signal_kevent /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
}
if (clean_up_signal_pipe) {
close(impl->cross_thread_signal_pipe[READ_FD]);
close(impl->cross_thread_signal_pipe[WRITE_FD]);
}
if (clean_up_kqueue) {
close(impl->kq_fd);
}
if (clean_up_thread) {
aws_thread_clean_up(&impl->thread_created_on);
}
if (clean_up_impl_mem) {
aws_mem_release(alloc, impl);
}
if (clean_up_event_loop_base) {
aws_event_loop_clean_up_base(event_loop);
}
if (clean_up_event_loop_mem) {
aws_mem_release(alloc, event_loop);
}
return NULL;
}
static void s_destroy(struct aws_event_loop *event_loop) {
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: destroying event_loop", (void *)event_loop);
struct kqueue_loop *impl = event_loop->impl_data;
/* Stop the event-thread. This might have already happened. It's safe to call multiple times. */
s_stop(event_loop);
int err = s_wait_for_stop_completion(event_loop);
if (err) {
AWS_LOGF_WARN(
AWS_LS_IO_EVENT_LOOP,
"id=%p: failed to destroy event-thread, resources have been leaked",
(void *)event_loop);
AWS_ASSERT("Failed to destroy event-thread, resources have been leaked." == NULL);
return;
}
/* setting this so that canceled tasks don't blow up when asking if they're on the event-loop thread. */
impl->thread_joined_to = aws_thread_current_thread_id();
aws_atomic_store_ptr(&impl->running_thread_id, &impl->thread_joined_to);
/* Clean up task-related stuff first. It's possible the a cancelled task adds further tasks to this event_loop.
* Tasks added in this way will be in cross_thread_data.tasks_to_schedule, so we clean that up last */
aws_task_scheduler_clean_up(&impl->thread_data.scheduler); /* Tasks in scheduler get cancelled*/
while (!aws_linked_list_empty(&impl->cross_thread_data.tasks_to_schedule)) {
struct aws_linked_list_node *node = aws_linked_list_pop_front(&impl->cross_thread_data.tasks_to_schedule);
struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);
task->fn(task, task->arg, AWS_TASK_STATUS_CANCELED);
}
/* Warn user if aws_io_handle was subscribed, but never unsubscribed. This would cause memory leaks. */
AWS_ASSERT(impl->thread_data.connected_handle_count == 0);
/* Clean up everything else */
aws_mutex_clean_up(&impl->cross_thread_data.mutex);
struct kevent thread_signal_kevent;
EV_SET(
&thread_signal_kevent,
impl->cross_thread_signal_pipe[READ_FD],
EVFILT_READ /*filter*/,
EV_DELETE /*flags*/,
0 /*fflags*/,
0 /*data*/,
NULL /*udata*/);
kevent(
impl->kq_fd,
&thread_signal_kevent /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
close(impl->cross_thread_signal_pipe[READ_FD]);
close(impl->cross_thread_signal_pipe[WRITE_FD]);
close(impl->kq_fd);
aws_thread_clean_up(&impl->thread_created_on);
aws_mem_release(event_loop->alloc, impl);
aws_event_loop_clean_up_base(event_loop);
aws_mem_release(event_loop->alloc, event_loop);
}
static int s_run(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: starting event-loop thread.", (void *)event_loop);
/* to re-run, call stop() and wait_for_stop_completion() */
AWS_ASSERT(impl->cross_thread_data.state == EVENT_THREAD_STATE_READY_TO_RUN);
AWS_ASSERT(impl->thread_data.state == EVENT_THREAD_STATE_READY_TO_RUN);
/* Since thread isn't running it's ok to touch thread_data,
* and it's ok to touch cross_thread_data without locking the mutex */
impl->cross_thread_data.state = EVENT_THREAD_STATE_RUNNING;
aws_thread_increment_unjoined_count();
int err =
aws_thread_launch(&impl->thread_created_on, aws_event_loop_thread, (void *)event_loop, &impl->thread_options);
if (err) {
aws_thread_decrement_unjoined_count();
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: thread creation failed.", (void *)event_loop);
goto clean_up;
}
return AWS_OP_SUCCESS;
clean_up:
impl->cross_thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
return AWS_OP_ERR;
}
/* This function can't fail, we're relying on the thread responding to critical messages (ex: stop thread) */
void signal_cross_thread_data_changed(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: signaling event-loop that cross-thread tasks need to be scheduled.",
(void *)event_loop);
/* Doesn't actually matter what we write, any activity on pipe signals that cross_thread_data has changed,
* If the pipe is full and the write fails, that's fine, the event-thread will get the signal from some previous
* write */
uint32_t write_whatever = 0xC0FFEE;
write(impl->cross_thread_signal_pipe[WRITE_FD], &write_whatever, sizeof(write_whatever));
}
static int s_stop(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
bool signal_thread = false;
{ /* Begin critical section */
aws_mutex_lock(&impl->cross_thread_data.mutex);
if (impl->cross_thread_data.state == EVENT_THREAD_STATE_RUNNING) {
impl->cross_thread_data.state = EVENT_THREAD_STATE_STOPPING;
signal_thread = !impl->cross_thread_data.thread_signaled;
impl->cross_thread_data.thread_signaled = true;
}
aws_mutex_unlock(&impl->cross_thread_data.mutex);
} /* End critical section */
if (signal_thread) {
signal_cross_thread_data_changed(event_loop);
}
return AWS_OP_SUCCESS;
}
static int s_wait_for_stop_completion(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
#ifdef DEBUG_BUILD
aws_mutex_lock(&impl->cross_thread_data.mutex);
/* call stop() before wait_for_stop_completion() or you'll wait forever */
AWS_ASSERT(impl->cross_thread_data.state != EVENT_THREAD_STATE_RUNNING);
aws_mutex_unlock(&impl->cross_thread_data.mutex);
#endif
int err = aws_thread_join(&impl->thread_created_on);
aws_thread_decrement_unjoined_count();
if (err) {
return AWS_OP_ERR;
}
/* Since thread is no longer running it's ok to touch thread_data,
* and it's ok to touch cross_thread_data without locking the mutex */
impl->cross_thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
impl->thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
return AWS_OP_SUCCESS;
}
/* Common functionality for "now" and "future" task scheduling.
* If `run_at_nanos` is zero then the task is scheduled as a "now" task. */
static void s_schedule_task_common(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos) {
AWS_ASSERT(task);
struct kqueue_loop *impl = event_loop->impl_data;
/* If we're on the event-thread, just schedule it directly */
if (s_is_event_thread(event_loop)) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: scheduling task %p in-thread for timestamp %llu",
(void *)event_loop,
(void *)task,
(unsigned long long)run_at_nanos);
if (run_at_nanos == 0) {
aws_task_scheduler_schedule_now(&impl->thread_data.scheduler, task);
} else {
aws_task_scheduler_schedule_future(&impl->thread_data.scheduler, task, run_at_nanos);
}
return;
}
/* Otherwise, add it to cross_thread_data.tasks_to_schedule and signal the event-thread to process it */
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: scheduling task %p cross-thread for timestamp %llu",
(void *)event_loop,
(void *)task,
(unsigned long long)run_at_nanos);
task->timestamp = run_at_nanos;
bool should_signal_thread = false;
/* Begin critical section */
aws_mutex_lock(&impl->cross_thread_data.mutex);
aws_linked_list_push_back(&impl->cross_thread_data.tasks_to_schedule, &task->node);
/* Signal thread that cross_thread_data has changed (unless it's been signaled already) */
if (!impl->cross_thread_data.thread_signaled) {
should_signal_thread = true;
impl->cross_thread_data.thread_signaled = true;
}
aws_mutex_unlock(&impl->cross_thread_data.mutex);
/* End critical section */
if (should_signal_thread) {
signal_cross_thread_data_changed(event_loop);
}
}
static void s_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task) {
s_schedule_task_common(event_loop, task, 0); /* Zero is used to denote "now" tasks */
}
static void s_schedule_task_future(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos) {
s_schedule_task_common(event_loop, task, run_at_nanos);
}
static void s_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task) {
struct kqueue_loop *kqueue_loop = event_loop->impl_data;
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: cancelling task %p", (void *)event_loop, (void *)task);
aws_task_scheduler_cancel_task(&kqueue_loop->thread_data.scheduler, task);
}
/* Scheduled task that connects aws_io_handle with the kqueue */
static void s_subscribe_task(struct aws_task *task, void *user_data, enum aws_task_status status) {
(void)task;
struct handle_data *handle_data = user_data;
struct aws_event_loop *event_loop = handle_data->event_loop;
struct kqueue_loop *impl = handle_data->event_loop->impl_data;
impl->thread_data.connected_handle_count++;
/* if task was cancelled, nothing to do */
if (status == AWS_TASK_STATUS_CANCELED) {
return;
}
/* If handle was unsubscribed before this task could execute, nothing to do */
if (handle_data->state == HANDLE_STATE_UNSUBSCRIBED) {
return;
}
AWS_ASSERT(handle_data->state == HANDLE_STATE_SUBSCRIBING);
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: subscribing to events on fd %d", (void *)event_loop, handle_data->owner->data.fd);
/* In order to monitor both reads and writes, kqueue requires you to add two separate kevents.
* If we're adding two separate kevents, but one of those fails, we need to remove the other kevent.
* Therefore we use the EV_RECEIPT flag. This causes kevent() to tell whether each EV_ADD succeeded,
* rather than the usual behavior of telling us about recent events. */
struct kevent changelist[2];
AWS_ZERO_ARRAY(changelist);
int changelist_size = 0;
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_READABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_READ /*filter*/,
EV_ADD | EV_RECEIPT | EV_CLEAR /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_WRITABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_WRITE /*filter*/,
EV_ADD | EV_RECEIPT | EV_CLEAR /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
int num_events = kevent(
impl->kq_fd,
changelist /*changelist*/,
changelist_size /*nchanges*/,
changelist /*eventlist. It's OK to re-use the same memory for changelist input and eventlist output*/,
changelist_size /*nevents*/,
NULL /*timeout*/);
if (num_events == -1) {
goto subscribe_failed;
}
/* Look through results to see if any failed */
for (int i = 0; i < num_events; ++i) {
/* Every result should be flagged as error, that's just how EV_RECEIPT works */
AWS_ASSERT(changelist[i].flags & EV_ERROR);
/* If a real error occurred, .data contains the error code */
if (changelist[i].data != 0) {
goto subscribe_failed;
}
}
/* Success */
handle_data->state = HANDLE_STATE_SUBSCRIBED;
return;
subscribe_failed:
AWS_LOGF_ERROR(
AWS_LS_IO_EVENT_LOOP,
"id=%p: failed to subscribe to events on fd %d",
(void *)event_loop,
handle_data->owner->data.fd);
/* Remove any related kevents that succeeded */
for (int i = 0; i < num_events; ++i) {
if (changelist[i].data == 0) {
changelist[i].flags = EV_DELETE;
kevent(
impl->kq_fd,
&changelist[i] /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
}
}
/* We can't return an error code because this was a scheduled task.
* Notify the user of the failed subscription by passing AWS_IO_EVENT_TYPE_ERROR to the callback. */
handle_data->on_event(event_loop, handle_data->owner, AWS_IO_EVENT_TYPE_ERROR, handle_data->on_event_user_data);
}
static int s_subscribe_to_io_events(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
aws_event_loop_on_event_fn *on_event,
void *user_data) {
AWS_ASSERT(event_loop);
AWS_ASSERT(handle->data.fd != -1);
AWS_ASSERT(handle->additional_data == NULL);
AWS_ASSERT(on_event);
/* Must subscribe for read, write, or both */
AWS_ASSERT(events & (AWS_IO_EVENT_TYPE_READABLE | AWS_IO_EVENT_TYPE_WRITABLE));
struct handle_data *handle_data = aws_mem_calloc(event_loop->alloc, 1, sizeof(struct handle_data));
if (!handle_data) {
return AWS_OP_ERR;
}
handle_data->owner = handle;
handle_data->event_loop = event_loop;
handle_data->on_event = on_event;
handle_data->on_event_user_data = user_data;
handle_data->events_subscribed = events;
handle_data->state = HANDLE_STATE_SUBSCRIBING;
handle->additional_data = handle_data;
/* We schedule a task to perform the actual changes to the kqueue, read on for an explanation why...
*
* kqueue requires separate registrations for read and write events.
* If the user wants to know about both read and write, we need register once for read and once for write.
* If the first registration succeeds, but the second registration fails, we need to delete the first registration.
* If this all happened outside the event-thread, the successful registration's events could begin processing
* in the brief window of time before the registration is deleted. */
aws_task_init(&handle_data->subscribe_task, s_subscribe_task, handle_data, "kqueue_event_loop_subscribe");
s_schedule_task_now(event_loop, &handle_data->subscribe_task);
return AWS_OP_SUCCESS;
}
static void s_free_io_event_resources(void *user_data) {
struct handle_data *handle_data = user_data;
struct kqueue_loop *impl = handle_data->event_loop->impl_data;
impl->thread_data.connected_handle_count--;
aws_mem_release(handle_data->event_loop->alloc, handle_data);
}
static void s_clean_up_handle_data_task(struct aws_task *task, void *user_data, enum aws_task_status status) {
(void)task;
(void)status;
struct handle_data *handle_data = user_data;
s_free_io_event_resources(handle_data);
}
static int s_unsubscribe_from_io_events(struct aws_event_loop *event_loop, struct aws_io_handle *handle) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: un-subscribing from events on fd %d", (void *)event_loop, handle->data.fd);
AWS_ASSERT(handle->additional_data);
struct handle_data *handle_data = handle->additional_data;
struct kqueue_loop *impl = event_loop->impl_data;
AWS_ASSERT(event_loop == handle_data->event_loop);
/* If the handle was successfully subscribed to kqueue, then remove it. */
if (handle_data->state == HANDLE_STATE_SUBSCRIBED) {
struct kevent changelist[2];
int changelist_size = 0;
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_READABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_READ /*filter*/,
EV_DELETE /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_WRITABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_WRITE /*filter*/,
EV_DELETE /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
kevent(impl->kq_fd, changelist, changelist_size, NULL /*eventlist*/, 0 /*nevents*/, NULL /*timeout*/);
}
/* Schedule a task to clean up the memory. This is done in a task to prevent the following scenario:
* - While processing a batch of events, some callback unsubscribes another aws_io_handle.
* - One of the other events in this batch belongs to that other aws_io_handle.
* - If the handle_data were already deleted, there would be an access invalid memory. */
aws_task_init(
&handle_data->cleanup_task, s_clean_up_handle_data_task, handle_data, "kqueue_event_loop_clean_up_handle_data");
aws_event_loop_schedule_task_now(event_loop, &handle_data->cleanup_task);
handle_data->state = HANDLE_STATE_UNSUBSCRIBED;
handle->additional_data = NULL;
return AWS_OP_SUCCESS;
}
static bool s_is_event_thread(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
aws_thread_id_t *thread_id = aws_atomic_load_ptr(&impl->running_thread_id);
return thread_id && aws_thread_thread_id_equal(*thread_id, aws_thread_current_thread_id());
}
/* Called from thread.
* Takes tasks from tasks_to_schedule and adds them to the scheduler. */
static void s_process_tasks_to_schedule(struct aws_event_loop *event_loop, struct aws_linked_list *tasks_to_schedule) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: processing cross-thread tasks", (void *)event_loop);
while (!aws_linked_list_empty(tasks_to_schedule)) {
struct aws_linked_list_node *node = aws_linked_list_pop_front(tasks_to_schedule);
struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: task %p pulled to event-loop, scheduling now.",
(void *)event_loop,
(void *)task);
/* Timestamp 0 is used to denote "now" tasks */
if (task->timestamp == 0) {
aws_task_scheduler_schedule_now(&impl->thread_data.scheduler, task);
} else {
aws_task_scheduler_schedule_future(&impl->thread_data.scheduler, task, task->timestamp);
}
}
}
static void s_process_cross_thread_data(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: notified of cross-thread data to process", (void *)event_loop);
/* If there are tasks to schedule, grab them all out of synced_data.tasks_to_schedule.
* We'll process them later, so that we minimize time spent holding the mutex. */
struct aws_linked_list tasks_to_schedule;
aws_linked_list_init(&tasks_to_schedule);
{ /* Begin critical section */
aws_mutex_lock(&impl->cross_thread_data.mutex);
impl->cross_thread_data.thread_signaled = false;
bool initiate_stop = (impl->cross_thread_data.state == EVENT_THREAD_STATE_STOPPING) &&
(impl->thread_data.state == EVENT_THREAD_STATE_RUNNING);
if (AWS_UNLIKELY(initiate_stop)) {
impl->thread_data.state = EVENT_THREAD_STATE_STOPPING;
}
aws_linked_list_swap_contents(&impl->cross_thread_data.tasks_to_schedule, &tasks_to_schedule);
aws_mutex_unlock(&impl->cross_thread_data.mutex);
} /* End critical section */
s_process_tasks_to_schedule(event_loop, &tasks_to_schedule);
}
static int s_aws_event_flags_from_kevent(struct kevent *kevent) {
int event_flags = 0;
if (kevent->flags & EV_ERROR) {
event_flags |= AWS_IO_EVENT_TYPE_ERROR;
} else if (kevent->filter == EVFILT_READ) {
if (kevent->data != 0) {
event_flags |= AWS_IO_EVENT_TYPE_READABLE;
}
if (kevent->flags & EV_EOF) {
event_flags |= AWS_IO_EVENT_TYPE_CLOSED;
}
} else if (kevent->filter == EVFILT_WRITE) {
if (kevent->data != 0) {
event_flags |= AWS_IO_EVENT_TYPE_WRITABLE;
}
if (kevent->flags & EV_EOF) {
event_flags |= AWS_IO_EVENT_TYPE_CLOSED;
}
}
return event_flags;
}
/**
* This just calls kevent()
*
* We broke this out into its own function so that the stacktrace clearly shows
* what this thread is doing. We've had a lot of cases where users think this
* thread is deadlocked because it's stuck here. We want it to be clear
* that it's doing nothing on purpose. It's waiting for events to happen...
*/
AWS_NO_INLINE
static int aws_event_loop_listen_for_io_events(int kq_fd, struct kevent kevents[MAX_EVENTS], struct timespec *timeout) {
return kevent(kq_fd, NULL /*changelist*/, 0 /*nchanges*/, kevents /*eventlist*/, MAX_EVENTS /*nevents*/, timeout);
}
static void s_aws_kqueue_cleanup_aws_lc_thread_local_state(void *user_data) {
(void)user_data;
aws_cal_thread_clean_up();
}
static void aws_event_loop_thread(void *user_data) {
struct aws_event_loop *event_loop = user_data;
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: main loop started", (void *)event_loop);
struct kqueue_loop *impl = event_loop->impl_data;
/* set thread id to the event-loop's thread. */
aws_atomic_store_ptr(&impl->running_thread_id, &impl->thread_created_on.thread_id);
AWS_ASSERT(impl->thread_data.state == EVENT_THREAD_STATE_READY_TO_RUN);
impl->thread_data.state = EVENT_THREAD_STATE_RUNNING;
struct kevent kevents[MAX_EVENTS];
/* A single aws_io_handle could have two separate kevents if subscribed for both read and write.
* If both the read and write kevents fire in the same loop of the event-thread,
* combine the event-flags and deliver them in a single callback.
* This makes the kqueue_event_loop behave more like the other platform implementations. */
struct handle_data *io_handle_events[MAX_EVENTS];
struct timespec timeout = {
.tv_sec = DEFAULT_TIMEOUT_SEC,
.tv_nsec = 0,
};
AWS_LOGF_INFO(
AWS_LS_IO_EVENT_LOOP,
"id=%p: default timeout %ds, and max events to process per tick %d",
(void *)event_loop,
DEFAULT_TIMEOUT_SEC,
MAX_EVENTS);
aws_thread_current_at_exit(s_aws_kqueue_cleanup_aws_lc_thread_local_state, NULL);
while (impl->thread_data.state == EVENT_THREAD_STATE_RUNNING) {
int num_io_handle_events = 0;
bool should_process_cross_thread_data = false;
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: waiting for a maximum of %ds %lluns",
(void *)event_loop,
(int)timeout.tv_sec,
(unsigned long long)timeout.tv_nsec);
/* Process kqueue events */
int num_kevents = aws_event_loop_listen_for_io_events(impl->kq_fd, kevents, &timeout);
aws_event_loop_register_tick_start(event_loop);
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: wake up with %d events to process.", (void *)event_loop, num_kevents);
if (num_kevents == -1) {
/* Raise an error, in case this is interesting to anyone monitoring,
* and continue on with this loop. We can't process events,
* but we can still process scheduled tasks */
aws_raise_error(AWS_ERROR_SYS_CALL_FAILURE);
/* Force the cross_thread_data to be processed.
* There might be valuable info in there, like the message to stop the thread.
* It's fine to do this even if nothing has changed, it just costs a mutex lock/unlock. */
should_process_cross_thread_data = true;
}
for (int i = 0; i < num_kevents; ++i) {
struct kevent *kevent = &kevents[i];
/* Was this event to signal that cross_thread_data has changed? */
if ((int)kevent->ident == impl->cross_thread_signal_pipe[READ_FD]) {
should_process_cross_thread_data = true;
/* Drain whatever data was written to the signaling pipe */
uint32_t read_whatever;
while (read((int)kevent->ident, &read_whatever, sizeof(read_whatever)) > 0) {
}
continue;
}
/* Otherwise this was a normal event on a subscribed handle. Figure out which flags to report. */
int event_flags = s_aws_event_flags_from_kevent(kevent);
if (event_flags == 0) {
continue;
}
/* Combine flags, in case multiple kevents correspond to one handle. (see notes at top of function) */
struct handle_data *handle_data = kevent->udata;
if (handle_data->events_this_loop == 0) {
io_handle_events[num_io_handle_events++] = handle_data;
}
handle_data->events_this_loop |= event_flags;
}
/* Invoke each handle's event callback (unless the handle has been unsubscribed) */
for (int i = 0; i < num_io_handle_events; ++i) {
struct handle_data *handle_data = io_handle_events[i];
if (handle_data->state == HANDLE_STATE_SUBSCRIBED) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: activity on fd %d, invoking handler.",
(void *)event_loop,
handle_data->owner->data.fd);
handle_data->on_event(
event_loop, handle_data->owner, handle_data->events_this_loop, handle_data->on_event_user_data);
}
handle_data->events_this_loop = 0;
}
/* Process cross_thread_data */
if (should_process_cross_thread_data) {
s_process_cross_thread_data(event_loop);
}
/* Run scheduled tasks */
uint64_t now_ns = 0;
event_loop->clock(&now_ns); /* If clock fails, now_ns will be 0 and tasks scheduled for a specific time
will not be run. That's ok, we'll handle them next time around. */
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: running scheduled tasks.", (void *)event_loop);
aws_task_scheduler_run_all(&impl->thread_data.scheduler, now_ns);
/* Set timeout for next kevent() call.
* If clock fails, or scheduler has no tasks, use default timeout */
bool use_default_timeout = false;
int err = event_loop->clock(&now_ns);
if (err) {
use_default_timeout = true;
}
uint64_t next_run_time_ns;
if (!aws_task_scheduler_has_tasks(&impl->thread_data.scheduler, &next_run_time_ns)) {
use_default_timeout = true;
}
if (use_default_timeout) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: no more scheduled tasks using default timeout.", (void *)event_loop);
timeout.tv_sec = DEFAULT_TIMEOUT_SEC;
timeout.tv_nsec = 0;
} else {
/* Convert from timestamp in nanoseconds, to timeout in seconds with nanosecond remainder */
uint64_t timeout_ns = next_run_time_ns > now_ns ? next_run_time_ns - now_ns : 0;
uint64_t timeout_remainder_ns = 0;
uint64_t timeout_sec =
aws_timestamp_convert(timeout_ns, AWS_TIMESTAMP_NANOS, AWS_TIMESTAMP_SECS, &timeout_remainder_ns);
if (timeout_sec > LONG_MAX) { /* Check for overflow. On Darwin, these values are stored as longs */
timeout_sec = LONG_MAX;
timeout_remainder_ns = 0;
}
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: detected more scheduled tasks with the next occurring at "
"%llu using timeout of %ds %lluns.",
(void *)event_loop,
(unsigned long long)timeout_ns,
(int)timeout_sec,
(unsigned long long)timeout_remainder_ns);
timeout.tv_sec = (time_t)(timeout_sec);
timeout.tv_nsec = (long)(timeout_remainder_ns);
}
aws_event_loop_register_tick_end(event_loop);
}
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: exiting main loop", (void *)event_loop);
/* reset to NULL. This should be updated again during destroy before tasks are canceled. */
aws_atomic_store_ptr(&impl->running_thread_id, NULL);
}
|