1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/io/event_loop.h>
#include <aws/common/clock.h>
#include <aws/common/device_random.h>
#include <aws/common/system_info.h>
#include <aws/common/thread.h>
struct aws_event_loop *aws_event_loop_new_default(struct aws_allocator *alloc, aws_io_clock_fn *clock) {
struct aws_event_loop_options options = {
.thread_options = NULL,
.clock = clock,
};
return aws_event_loop_new_default_with_options(alloc, &options);
}
static void s_event_loop_group_thread_exit(void *user_data) {
struct aws_event_loop_group *el_group = user_data;
aws_simple_completion_callback *completion_callback = el_group->shutdown_options.shutdown_callback_fn;
void *completion_user_data = el_group->shutdown_options.shutdown_callback_user_data;
aws_mem_release(el_group->allocator, el_group);
if (completion_callback != NULL) {
completion_callback(completion_user_data);
}
}
static void s_aws_event_loop_group_shutdown_sync(struct aws_event_loop_group *el_group) {
while (aws_array_list_length(&el_group->event_loops) > 0) {
struct aws_event_loop *loop = NULL;
if (!aws_array_list_back(&el_group->event_loops, &loop)) {
aws_event_loop_destroy(loop);
}
aws_array_list_pop_back(&el_group->event_loops);
}
aws_array_list_clean_up(&el_group->event_loops);
}
static void s_event_loop_destroy_async_thread_fn(void *thread_data) {
struct aws_event_loop_group *el_group = thread_data;
s_aws_event_loop_group_shutdown_sync(el_group);
aws_thread_current_at_exit(s_event_loop_group_thread_exit, el_group);
}
static void s_aws_event_loop_group_shutdown_async(struct aws_event_loop_group *el_group) {
/* It's possible that the last refcount was released on an event-loop thread,
* so we would deadlock if we waited here for all the event-loop threads to shut down.
* Therefore, we spawn a NEW thread and have it wait for all the event-loop threads to shut down
*/
struct aws_thread cleanup_thread;
AWS_ZERO_STRUCT(cleanup_thread);
aws_thread_init(&cleanup_thread, el_group->allocator);
struct aws_thread_options thread_options = *aws_default_thread_options();
thread_options.join_strategy = AWS_TJS_MANAGED;
thread_options.name = aws_byte_cursor_from_c_str("EvntLoopCleanup"); /* 15 characters is max for Linux */
aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options);
}
static struct aws_event_loop_group *s_event_loop_group_new(
struct aws_allocator *alloc,
aws_io_clock_fn *clock,
uint16_t el_count,
uint16_t cpu_group,
bool pin_threads,
aws_new_event_loop_fn *new_loop_fn,
void *new_loop_user_data,
const struct aws_shutdown_callback_options *shutdown_options) {
AWS_ASSERT(new_loop_fn);
size_t group_cpu_count = 0;
struct aws_cpu_info *usable_cpus = NULL;
if (pin_threads) {
group_cpu_count = aws_get_cpu_count_for_group(cpu_group);
if (!group_cpu_count) {
aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
return NULL;
}
usable_cpus = aws_mem_calloc(alloc, group_cpu_count, sizeof(struct aws_cpu_info));
if (usable_cpus == NULL) {
return NULL;
}
aws_get_cpu_ids_for_group(cpu_group, usable_cpus, group_cpu_count);
}
struct aws_event_loop_group *el_group = aws_mem_calloc(alloc, 1, sizeof(struct aws_event_loop_group));
if (el_group == NULL) {
return NULL;
}
el_group->allocator = alloc;
aws_ref_count_init(
&el_group->ref_count, el_group, (aws_simple_completion_callback *)s_aws_event_loop_group_shutdown_async);
if (aws_array_list_init_dynamic(&el_group->event_loops, alloc, el_count, sizeof(struct aws_event_loop *))) {
goto on_error;
}
for (uint16_t i = 0; i < el_count; ++i) {
/* Don't pin to hyper-threads if a user cared enough to specify a NUMA node */
if (!pin_threads || (i < group_cpu_count && !usable_cpus[i].suspected_hyper_thread)) {
struct aws_thread_options thread_options = *aws_default_thread_options();
struct aws_event_loop_options options = {
.clock = clock,
.thread_options = &thread_options,
};
if (pin_threads) {
thread_options.cpu_id = usable_cpus[i].cpu_id;
}
/* Thread name should be <= 15 characters */
char thread_name[32] = {0};
int thread_name_len = snprintf(thread_name, sizeof(thread_name), "AwsEventLoop %d", (int)i + 1);
if (thread_name_len > AWS_THREAD_NAME_RECOMMENDED_STRLEN) {
snprintf(thread_name, sizeof(thread_name), "AwsEventLoop");
}
thread_options.name = aws_byte_cursor_from_c_str(thread_name);
struct aws_event_loop *loop = new_loop_fn(alloc, &options, new_loop_user_data);
if (!loop) {
goto on_error;
}
if (aws_array_list_push_back(&el_group->event_loops, (const void *)&loop)) {
aws_event_loop_destroy(loop);
goto on_error;
}
if (aws_event_loop_run(loop)) {
goto on_error;
}
}
}
if (shutdown_options != NULL) {
el_group->shutdown_options = *shutdown_options;
}
if (pin_threads) {
aws_mem_release(alloc, usable_cpus);
}
return el_group;
on_error:;
/* cache the error code to prevent any potential side effects */
int cached_error_code = aws_last_error();
aws_mem_release(alloc, usable_cpus);
s_aws_event_loop_group_shutdown_sync(el_group);
s_event_loop_group_thread_exit(el_group);
/* raise the cached error code */
aws_raise_error(cached_error_code);
return NULL;
}
struct aws_event_loop_group *aws_event_loop_group_new(
struct aws_allocator *alloc,
aws_io_clock_fn *clock,
uint16_t el_count,
aws_new_event_loop_fn *new_loop_fn,
void *new_loop_user_data,
const struct aws_shutdown_callback_options *shutdown_options) {
AWS_ASSERT(new_loop_fn);
AWS_ASSERT(el_count);
return s_event_loop_group_new(alloc, clock, el_count, 0, false, new_loop_fn, new_loop_user_data, shutdown_options);
}
static struct aws_event_loop *s_default_new_event_loop(
struct aws_allocator *allocator,
const struct aws_event_loop_options *options,
void *user_data) {
(void)user_data;
return aws_event_loop_new_default_with_options(allocator, options);
}
struct aws_event_loop_group *aws_event_loop_group_new_default(
struct aws_allocator *alloc,
uint16_t max_threads,
const struct aws_shutdown_callback_options *shutdown_options) {
if (!max_threads) {
uint16_t processor_count = (uint16_t)aws_system_info_processor_count();
/* cut them in half to avoid using hyper threads for the IO work. */
max_threads = processor_count > 1 ? processor_count / 2 : processor_count;
}
return aws_event_loop_group_new(
alloc, aws_high_res_clock_get_ticks, max_threads, s_default_new_event_loop, NULL, shutdown_options);
}
struct aws_event_loop_group *aws_event_loop_group_new_pinned_to_cpu_group(
struct aws_allocator *alloc,
aws_io_clock_fn *clock,
uint16_t el_count,
uint16_t cpu_group,
aws_new_event_loop_fn *new_loop_fn,
void *new_loop_user_data,
const struct aws_shutdown_callback_options *shutdown_options) {
AWS_ASSERT(new_loop_fn);
AWS_ASSERT(el_count);
return s_event_loop_group_new(
alloc, clock, el_count, cpu_group, true, new_loop_fn, new_loop_user_data, shutdown_options);
}
struct aws_event_loop_group *aws_event_loop_group_new_default_pinned_to_cpu_group(
struct aws_allocator *alloc,
uint16_t max_threads,
uint16_t cpu_group,
const struct aws_shutdown_callback_options *shutdown_options) {
if (!max_threads) {
uint16_t processor_count = (uint16_t)aws_system_info_processor_count();
/* cut them in half to avoid using hyper threads for the IO work. */
max_threads = processor_count > 1 ? processor_count / 2 : processor_count;
}
return aws_event_loop_group_new_pinned_to_cpu_group(
alloc, aws_high_res_clock_get_ticks, max_threads, cpu_group, s_default_new_event_loop, NULL, shutdown_options);
}
struct aws_event_loop_group *aws_event_loop_group_acquire(struct aws_event_loop_group *el_group) {
if (el_group != NULL) {
aws_ref_count_acquire(&el_group->ref_count);
}
return el_group;
}
void aws_event_loop_group_release(struct aws_event_loop_group *el_group) {
if (el_group != NULL) {
aws_ref_count_release(&el_group->ref_count);
}
}
size_t aws_event_loop_group_get_loop_count(struct aws_event_loop_group *el_group) {
return aws_array_list_length(&el_group->event_loops);
}
struct aws_event_loop *aws_event_loop_group_get_loop_at(struct aws_event_loop_group *el_group, size_t index) {
struct aws_event_loop *el = NULL;
aws_array_list_get_at(&el_group->event_loops, &el, index);
return el;
}
struct aws_event_loop *aws_event_loop_group_get_next_loop(struct aws_event_loop_group *el_group) {
size_t loop_count = aws_array_list_length(&el_group->event_loops);
AWS_ASSERT(loop_count > 0);
if (loop_count == 0) {
return NULL;
}
/* do one call to get 32 random bits because this hits an actual entropy source and it's not cheap */
uint32_t random_32_bit_num = 0;
aws_device_random_u32(&random_32_bit_num);
/* use the best of two algorithm to select the loop with the lowest load.
* If we find device random is too hard on the kernel, we can seed it and use another random
* number generator. */
/* it's fine and intentional, the case will throw off the top 16 bits and that's what we want. */
uint16_t random_num_a = (uint16_t)random_32_bit_num;
random_num_a = random_num_a % loop_count;
uint16_t random_num_b = (uint16_t)(random_32_bit_num >> 16);
random_num_b = random_num_b % loop_count;
struct aws_event_loop *random_loop_a = NULL;
struct aws_event_loop *random_loop_b = NULL;
aws_array_list_get_at(&el_group->event_loops, &random_loop_a, random_num_a);
aws_array_list_get_at(&el_group->event_loops, &random_loop_b, random_num_b);
/* there's no logical reason why this should ever be possible. It's just best to die if it happens. */
AWS_FATAL_ASSERT((random_loop_a && random_loop_b) && "random_loop_a or random_loop_b is NULL.");
size_t load_a = aws_event_loop_get_load_factor(random_loop_a);
size_t load_b = aws_event_loop_get_load_factor(random_loop_b);
return load_a < load_b ? random_loop_a : random_loop_b;
}
static void s_object_removed(void *value) {
struct aws_event_loop_local_object *object = (struct aws_event_loop_local_object *)value;
if (object->on_object_removed) {
object->on_object_removed(object);
}
}
int aws_event_loop_init_base(struct aws_event_loop *event_loop, struct aws_allocator *alloc, aws_io_clock_fn *clock) {
AWS_ZERO_STRUCT(*event_loop);
event_loop->alloc = alloc;
event_loop->clock = clock;
aws_atomic_init_int(&event_loop->current_load_factor, 0u);
aws_atomic_init_int(&event_loop->next_flush_time, 0u);
if (aws_hash_table_init(&event_loop->local_data, alloc, 20, aws_hash_ptr, aws_ptr_eq, NULL, s_object_removed)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
void aws_event_loop_clean_up_base(struct aws_event_loop *event_loop) {
aws_hash_table_clean_up(&event_loop->local_data);
}
void aws_event_loop_register_tick_start(struct aws_event_loop *event_loop) {
aws_high_res_clock_get_ticks(&event_loop->latest_tick_start);
}
void aws_event_loop_register_tick_end(struct aws_event_loop *event_loop) {
/* increment the timestamp diff counter (this should always be called from the same thread), the concurrency
* work happens during the flush. */
uint64_t end_tick = 0;
aws_high_res_clock_get_ticks(&end_tick);
size_t elapsed = (size_t)aws_min_u64(end_tick - event_loop->latest_tick_start, SIZE_MAX);
event_loop->current_tick_latency_sum = aws_add_size_saturating(event_loop->current_tick_latency_sum, elapsed);
event_loop->latest_tick_start = 0;
size_t next_flush_time_secs = aws_atomic_load_int(&event_loop->next_flush_time);
/* store as seconds because we can't make a 64-bit integer reliably atomic across platforms. */
uint64_t end_tick_secs = aws_timestamp_convert(end_tick, AWS_TIMESTAMP_NANOS, AWS_TIMESTAMP_SECS, NULL);
/* if a second has passed, flush the load-factor. */
if (end_tick_secs > next_flush_time_secs) {
aws_atomic_store_int(&event_loop->current_load_factor, event_loop->current_tick_latency_sum);
event_loop->current_tick_latency_sum = 0;
/* run again in a second. */
aws_atomic_store_int(&event_loop->next_flush_time, (size_t)(end_tick_secs + 1));
}
}
size_t aws_event_loop_get_load_factor(struct aws_event_loop *event_loop) {
uint64_t current_time = 0;
aws_high_res_clock_get_ticks(¤t_time);
uint64_t current_time_secs = aws_timestamp_convert(current_time, AWS_TIMESTAMP_NANOS, AWS_TIMESTAMP_SECS, NULL);
size_t next_flush_time_secs = aws_atomic_load_int(&event_loop->next_flush_time);
/* safety valve just in case an event-loop had heavy load and then went completely idle. If we haven't
* had an update from the event-loop in 10 seconds, just assume idle. Also, yes this is racy, but it should
* be good enough because an active loop will be updating its counter frequently ( more than once per 10 seconds
* for sure ), in the case where we hit the technical race condition, we don't care anyways and returning 0
* is the desired behavior. */
if (current_time_secs > next_flush_time_secs + 10) {
return 0;
}
return aws_atomic_load_int(&event_loop->current_load_factor);
}
void aws_event_loop_destroy(struct aws_event_loop *event_loop) {
if (!event_loop) {
return;
}
AWS_ASSERT(event_loop->vtable && event_loop->vtable->destroy);
AWS_ASSERT(!aws_event_loop_thread_is_callers_thread(event_loop));
event_loop->vtable->destroy(event_loop);
}
int aws_event_loop_fetch_local_object(
struct aws_event_loop *event_loop,
void *key,
struct aws_event_loop_local_object *obj) {
AWS_ASSERT(aws_event_loop_thread_is_callers_thread(event_loop));
struct aws_hash_element *object = NULL;
if (!aws_hash_table_find(&event_loop->local_data, key, &object) && object) {
*obj = *(struct aws_event_loop_local_object *)object->value;
return AWS_OP_SUCCESS;
}
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
int aws_event_loop_put_local_object(struct aws_event_loop *event_loop, struct aws_event_loop_local_object *obj) {
AWS_ASSERT(aws_event_loop_thread_is_callers_thread(event_loop));
struct aws_hash_element *object = NULL;
int was_created = 0;
if (!aws_hash_table_create(&event_loop->local_data, obj->key, &object, &was_created)) {
object->key = obj->key;
object->value = obj;
return AWS_OP_SUCCESS;
}
return AWS_OP_ERR;
}
int aws_event_loop_remove_local_object(
struct aws_event_loop *event_loop,
void *key,
struct aws_event_loop_local_object *removed_obj) {
AWS_ASSERT(aws_event_loop_thread_is_callers_thread(event_loop));
struct aws_hash_element existing_object;
AWS_ZERO_STRUCT(existing_object);
int was_present = 0;
struct aws_hash_element *remove_candidate = removed_obj ? &existing_object : NULL;
if (!aws_hash_table_remove(&event_loop->local_data, key, remove_candidate, &was_present)) {
if (remove_candidate && was_present) {
*removed_obj = *(struct aws_event_loop_local_object *)existing_object.value;
}
return AWS_OP_SUCCESS;
}
return AWS_OP_ERR;
}
int aws_event_loop_run(struct aws_event_loop *event_loop) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->run);
return event_loop->vtable->run(event_loop);
}
int aws_event_loop_stop(struct aws_event_loop *event_loop) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->stop);
return event_loop->vtable->stop(event_loop);
}
int aws_event_loop_wait_for_stop_completion(struct aws_event_loop *event_loop) {
AWS_ASSERT(!aws_event_loop_thread_is_callers_thread(event_loop));
AWS_ASSERT(event_loop->vtable && event_loop->vtable->wait_for_stop_completion);
return event_loop->vtable->wait_for_stop_completion(event_loop);
}
void aws_event_loop_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->schedule_task_now);
AWS_ASSERT(task);
event_loop->vtable->schedule_task_now(event_loop, task);
}
void aws_event_loop_schedule_task_future(
struct aws_event_loop *event_loop,
struct aws_task *task,
uint64_t run_at_nanos) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->schedule_task_future);
AWS_ASSERT(task);
event_loop->vtable->schedule_task_future(event_loop, task, run_at_nanos);
}
void aws_event_loop_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->cancel_task);
AWS_ASSERT(aws_event_loop_thread_is_callers_thread(event_loop));
AWS_ASSERT(task);
event_loop->vtable->cancel_task(event_loop, task);
}
#if AWS_USE_IO_COMPLETION_PORTS
int aws_event_loop_connect_handle_to_io_completion_port(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->connect_to_io_completion_port);
return event_loop->vtable->connect_to_io_completion_port(event_loop, handle);
}
#else /* !AWS_USE_IO_COMPLETION_PORTS */
int aws_event_loop_subscribe_to_io_events(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
aws_event_loop_on_event_fn *on_event,
void *user_data) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->subscribe_to_io_events);
return event_loop->vtable->subscribe_to_io_events(event_loop, handle, events, on_event, user_data);
}
#endif /* AWS_USE_IO_COMPLETION_PORTS */
int aws_event_loop_unsubscribe_from_io_events(struct aws_event_loop *event_loop, struct aws_io_handle *handle) {
AWS_ASSERT(aws_event_loop_thread_is_callers_thread(event_loop));
AWS_ASSERT(event_loop->vtable && event_loop->vtable->unsubscribe_from_io_events);
return event_loop->vtable->unsubscribe_from_io_events(event_loop, handle);
}
void aws_event_loop_free_io_event_resources(struct aws_event_loop *event_loop, struct aws_io_handle *handle) {
AWS_ASSERT(event_loop && event_loop->vtable->free_io_event_resources);
event_loop->vtable->free_io_event_resources(handle->additional_data);
}
bool aws_event_loop_thread_is_callers_thread(struct aws_event_loop *event_loop) {
AWS_ASSERT(event_loop->vtable && event_loop->vtable->is_on_callers_thread);
return event_loop->vtable->is_on_callers_thread(event_loop);
}
int aws_event_loop_current_clock_time(struct aws_event_loop *event_loop, uint64_t *time_nanos) {
AWS_ASSERT(event_loop->clock);
return event_loop->clock(time_nanos);
}
|