1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/atomics.h>
#include <aws/common/clock.h>
#include <aws/common/condition_variable.h>
#include <aws/common/system_info.h>
#include <aws/common/task_scheduler.h>
#include <aws/io/event_loop.h>
#include <aws/common/thread.h>
#include <aws/testing/aws_test_harness.h>
struct task_args {
bool invoked;
bool was_in_thread;
aws_thread_id_t thread_id;
struct aws_event_loop *loop;
struct aws_event_loop_group *el_group;
enum aws_task_status status;
struct aws_mutex mutex;
struct aws_condition_variable condition_variable;
struct aws_atomic_var thread_complete;
};
static void s_test_task(struct aws_task *task, void *user_data, enum aws_task_status status) {
(void)task;
struct task_args *args = user_data;
aws_mutex_lock(&args->mutex);
args->thread_id = aws_thread_current_thread_id();
args->invoked = true;
args->status = status;
args->was_in_thread = aws_event_loop_thread_is_callers_thread(args->loop);
aws_mutex_unlock((&args->mutex));
aws_condition_variable_notify_one(&args->condition_variable);
}
static bool s_task_ran_predicate(void *args) {
struct task_args *task_args = args;
return task_args->invoked;
}
/*
* Test that a scheduled task from a non-event loop owned thread executes.
*/
static int s_test_event_loop_xthread_scheduled_tasks_execute(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_event_loop *event_loop = aws_event_loop_new_default(allocator, aws_high_res_clock_get_ticks);
ASSERT_NOT_NULL(event_loop, "Event loop creation failed with error: %s", aws_error_debug_str(aws_last_error()));
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
struct task_args task_args = {
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.mutex = AWS_MUTEX_INIT,
.invoked = false,
.was_in_thread = false,
.status = -1,
.loop = event_loop,
.thread_id = 0,
};
struct aws_task task;
aws_task_init(&task, s_test_task, &task_args, "xthread_scheduled_tasks_execute");
/* Test "future" tasks */
ASSERT_SUCCESS(aws_mutex_lock(&task_args.mutex));
uint64_t now;
ASSERT_SUCCESS(aws_event_loop_current_clock_time(event_loop, &now));
aws_event_loop_schedule_task_future(event_loop, &task, now);
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task_args.condition_variable, &task_args.mutex, s_task_ran_predicate, &task_args));
ASSERT_TRUE(task_args.invoked);
aws_mutex_unlock(&task_args.mutex);
ASSERT_FALSE(aws_thread_thread_id_equal(task_args.thread_id, aws_thread_current_thread_id()));
/* Test "now" tasks */
task_args.invoked = false;
ASSERT_SUCCESS(aws_mutex_lock(&task_args.mutex));
aws_event_loop_schedule_task_now(event_loop, &task);
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task_args.condition_variable, &task_args.mutex, s_task_ran_predicate, &task_args));
ASSERT_TRUE(task_args.invoked);
aws_mutex_unlock(&task_args.mutex);
aws_event_loop_destroy(event_loop);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_xthread_scheduled_tasks_execute, s_test_event_loop_xthread_scheduled_tasks_execute)
static bool s_test_cancel_thread_task_predicate(void *args) {
struct task_args *task_args = args;
return task_args->invoked;
}
/*
* Test that a scheduled task from a non-event loop owned thread executes.
*/
static int s_test_event_loop_canceled_tasks_run_in_el_thread(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_event_loop *event_loop = aws_event_loop_new_default(allocator, aws_high_res_clock_get_ticks);
ASSERT_NOT_NULL(event_loop, "Event loop creation failed with error: %s", aws_error_debug_str(aws_last_error()));
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
struct task_args task1_args = {
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.mutex = AWS_MUTEX_INIT,
.invoked = false,
.was_in_thread = false,
.status = -1,
.loop = event_loop,
.thread_id = 0,
};
struct task_args task2_args = {
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.mutex = AWS_MUTEX_INIT,
.invoked = false,
.was_in_thread = false,
.status = -1,
.loop = event_loop,
.thread_id = 0,
};
struct aws_task task1;
aws_task_init(&task1, s_test_task, &task1_args, "canceled_tasks_run_in_el_thread1");
struct aws_task task2;
aws_task_init(&task2, s_test_task, &task2_args, "canceled_tasks_run_in_el_thread2");
aws_event_loop_schedule_task_now(event_loop, &task1);
uint64_t now;
ASSERT_SUCCESS(aws_event_loop_current_clock_time(event_loop, &now));
aws_event_loop_schedule_task_future(event_loop, &task2, now + 10000000000);
ASSERT_FALSE(aws_event_loop_thread_is_callers_thread(event_loop));
ASSERT_SUCCESS(aws_mutex_lock(&task1_args.mutex));
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task1_args.condition_variable, &task1_args.mutex, s_task_ran_predicate, &task1_args));
ASSERT_TRUE(task1_args.invoked);
ASSERT_TRUE(task1_args.was_in_thread);
ASSERT_FALSE(aws_thread_thread_id_equal(task1_args.thread_id, aws_thread_current_thread_id()));
ASSERT_INT_EQUALS(AWS_TASK_STATUS_RUN_READY, task1_args.status);
aws_mutex_unlock(&task1_args.mutex);
aws_event_loop_destroy(event_loop);
aws_mutex_lock(&task2_args.mutex);
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task2_args.condition_variable, &task2_args.mutex, s_test_cancel_thread_task_predicate, &task2_args));
ASSERT_TRUE(task2_args.invoked);
aws_mutex_unlock(&task2_args.mutex);
ASSERT_TRUE(task2_args.was_in_thread);
ASSERT_TRUE(aws_thread_thread_id_equal(task2_args.thread_id, aws_thread_current_thread_id()));
ASSERT_INT_EQUALS(AWS_TASK_STATUS_CANCELED, task2_args.status);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_canceled_tasks_run_in_el_thread, s_test_event_loop_canceled_tasks_run_in_el_thread)
#if AWS_USE_IO_COMPLETION_PORTS
int aws_pipe_get_unique_name(char *dst, size_t dst_size);
/* Open read/write handles to a pipe with support for async (overlapped) read and write */
static int s_async_pipe_init(struct aws_io_handle *read_handle, struct aws_io_handle *write_handle) {
char pipe_name[256];
ASSERT_SUCCESS(aws_pipe_get_unique_name(pipe_name, sizeof(pipe_name)));
write_handle->data.handle = CreateNamedPipeA(
pipe_name, /* lpName */
PIPE_ACCESS_OUTBOUND | FILE_FLAG_OVERLAPPED | FILE_FLAG_FIRST_PIPE_INSTANCE, /* dwOpenMode */
PIPE_TYPE_BYTE | PIPE_WAIT | PIPE_REJECT_REMOTE_CLIENTS, /* dwPipeMode */
1, /* nMaxInstances */
2048, /* nOutBufferSize */
2048, /* nInBufferSize */
0, /* nDefaultTimeOut */
NULL); /* lpSecurityAttributes */
ASSERT_TRUE(write_handle->data.handle != INVALID_HANDLE_VALUE);
read_handle->data.handle = CreateFileA(
pipe_name, /* lpFileName */
GENERIC_READ, /* dwDesiredAccess */
0, /* dwShareMode */
NULL, /* lpSecurityAttributes */
OPEN_EXISTING, /* dwCreationDisposition */
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, /* dwFlagsAndAttributes */
NULL); /* hTemplateFile */
ASSERT_TRUE(read_handle->data.handle != INVALID_HANDLE_VALUE);
return AWS_OP_SUCCESS;
}
static void s_async_pipe_clean_up(struct aws_io_handle *read_handle, struct aws_io_handle *write_handle) {
CloseHandle(read_handle->data.handle);
CloseHandle(write_handle->data.handle);
}
struct overlapped_completion_data {
struct aws_mutex mutex;
struct aws_condition_variable condition_variable;
bool signaled;
struct aws_event_loop *event_loop;
struct aws_overlapped *overlapped;
int status_code;
size_t num_bytes_transferred;
};
static int s_overlapped_completion_data_init(struct overlapped_completion_data *data) {
AWS_ZERO_STRUCT(*data);
ASSERT_SUCCESS(aws_mutex_init(&data->mutex));
ASSERT_SUCCESS(aws_condition_variable_init(&data->condition_variable));
return AWS_OP_SUCCESS;
}
static void s_overlapped_completion_data_clean_up(struct overlapped_completion_data *data) {
aws_condition_variable_clean_up(&data->condition_variable);
aws_mutex_clean_up(&data->mutex);
}
static void s_on_overlapped_operation_complete(
struct aws_event_loop *event_loop,
struct aws_overlapped *overlapped,
int status_code,
size_t num_bytes_transferred) {
struct overlapped_completion_data *data = overlapped->user_data;
aws_mutex_lock(&data->mutex);
data->event_loop = event_loop;
data->overlapped = overlapped;
data->status_code = status_code;
data->num_bytes_transferred = num_bytes_transferred;
data->signaled = true;
aws_condition_variable_notify_one(&data->condition_variable);
aws_mutex_unlock(&data->mutex);
}
static bool s_overlapped_completion_predicate(void *args) {
struct overlapped_completion_data *data = args;
return data->signaled;
}
static int s_test_event_loop_completion_events(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
/* Start event-loop */
struct aws_event_loop *event_loop = aws_event_loop_new_default(allocator, aws_high_res_clock_get_ticks);
ASSERT_NOT_NULL(event_loop);
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
/* Open a pipe */
struct aws_io_handle read_handle;
struct aws_io_handle write_handle;
ASSERT_SUCCESS(s_async_pipe_init(&read_handle, &write_handle));
/* Connect to event-loop */
ASSERT_SUCCESS(aws_event_loop_connect_handle_to_io_completion_port(event_loop, &write_handle));
/* Set up an async (overlapped) write that will result in s_on_overlapped_operation_complete() getting run
* and filling out `completion_data` */
struct overlapped_completion_data completion_data;
s_overlapped_completion_data_init(&completion_data);
struct aws_overlapped overlapped;
aws_overlapped_init(&overlapped, s_on_overlapped_operation_complete, &completion_data);
/* Do async write */
const char msg[] = "Cherry Pie";
bool write_success =
WriteFile(write_handle.data.handle, msg, sizeof(msg), NULL, aws_overlapped_to_windows_overlapped(&overlapped));
ASSERT_TRUE(write_success || GetLastError() == ERROR_IO_PENDING);
/* Wait for completion callbacks */
ASSERT_SUCCESS(aws_mutex_lock(&completion_data.mutex));
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&completion_data.condition_variable,
&completion_data.mutex,
s_overlapped_completion_predicate,
&completion_data));
ASSERT_SUCCESS(aws_mutex_unlock(&completion_data.mutex));
/* Assert that the aws_event_loop_on_completion_fn passed the appropriate args */
ASSERT_PTR_EQUALS(event_loop, completion_data.event_loop);
ASSERT_PTR_EQUALS(&overlapped, completion_data.overlapped);
ASSERT_INT_EQUALS(0, completion_data.status_code); /* Check status code for I/O operation */
ASSERT_INT_EQUALS(sizeof(msg), completion_data.num_bytes_transferred);
/* Shut it all down */
s_overlapped_completion_data_clean_up(&completion_data);
s_async_pipe_clean_up(&read_handle, &write_handle);
aws_event_loop_destroy(event_loop);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_completion_events, s_test_event_loop_completion_events)
#else /* !AWS_USE_IO_COMPLETION_PORTS */
# include <unistd.h>
int aws_open_nonblocking_posix_pipe(int pipe_fds[2]);
/* Define simple pipe for testing. */
int simple_pipe_open(struct aws_io_handle *read_handle, struct aws_io_handle *write_handle) {
AWS_ZERO_STRUCT(*read_handle);
AWS_ZERO_STRUCT(*write_handle);
int pipe_fds[2];
ASSERT_SUCCESS(aws_open_nonblocking_posix_pipe(pipe_fds));
read_handle->data.fd = pipe_fds[0];
write_handle->data.fd = pipe_fds[1];
return AWS_OP_SUCCESS;
}
void simple_pipe_close(struct aws_io_handle *read_handle, struct aws_io_handle *write_handle) {
close(read_handle->data.fd);
close(write_handle->data.fd);
}
/* return number of bytes written */
size_t simple_pipe_write(struct aws_io_handle *handle, const uint8_t *src, size_t src_size) {
ssize_t write_val = write(handle->data.fd, src, src_size);
return (write_val < 0) ? 0 : write_val;
}
/* return number of bytes read */
size_t simple_pipe_read(struct aws_io_handle *handle, uint8_t *dst, size_t dst_size) {
ssize_t read_val = read(handle->data.fd, dst, dst_size);
return (read_val < 0) ? 0 : read_val;
}
struct unsubrace_data {
struct aws_event_loop *event_loop;
struct aws_io_handle read_handle[2];
struct aws_io_handle write_handle[2];
bool is_writable[2];
bool wrote_to_both_pipes;
bool is_unsubscribed;
struct aws_task task;
struct aws_mutex mutex;
struct aws_condition_variable condition_variable;
bool done;
int result_code;
};
void s_unsubrace_error(struct unsubrace_data *data) {
aws_mutex_lock(&data->mutex);
data->result_code = -1;
data->done = true;
aws_condition_variable_notify_one(&data->condition_variable);
aws_mutex_unlock(&data->mutex);
}
void s_unsubrace_done(struct unsubrace_data *data) {
aws_mutex_lock(&data->mutex);
data->done = true;
aws_condition_variable_notify_one(&data->condition_variable);
aws_mutex_unlock(&data->mutex);
}
/* Wait until both pipes are writable, then write data to both of them.
* This make it likely that both pipes receive events in the same iteration of the event-loop. */
void s_unsubrace_on_writable_event(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
void *user_data) {
(void)event_loop;
struct unsubrace_data *data = user_data;
/* There should be no events after unsubscribe */
if (data->is_unsubscribed) {
s_unsubrace_error(data);
return;
}
if (!(events & AWS_IO_EVENT_TYPE_WRITABLE)) {
return;
}
if (data->wrote_to_both_pipes) {
return;
}
bool all_writable = true;
for (int i = 0; i < 2; ++i) {
if (&data->write_handle[i] == handle) {
data->is_writable[i] = true;
}
if (!data->is_writable[i]) {
all_writable = false;
}
}
if (!all_writable) {
return;
}
for (int i = 0; i < 2; ++i) {
uint8_t buffer[] = "abc";
size_t bytes_written = simple_pipe_write(&data->write_handle[i], buffer, 3);
if (bytes_written == 0) {
s_unsubrace_error(data);
return;
}
}
data->wrote_to_both_pipes = true;
}
void s_unsubrace_done_task(struct aws_task *task, void *arg, enum aws_task_status status) {
(void)task;
struct unsubrace_data *data = arg;
if (status != AWS_TASK_STATUS_RUN_READY) {
s_unsubrace_error(data);
return;
}
s_unsubrace_done(data);
}
/* Both pipes should have a readable event on the way.
* The first pipe to get the event closes both pipes.
* Since both pipes are unsubscribed, the second readable event shouldn't be delivered */
void s_unsubrace_on_readable_event(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
void *user_data) {
(void)handle;
struct unsubrace_data *data = user_data;
int err;
if (data->is_unsubscribed) {
s_unsubrace_error(data);
return;
}
if (!(events & AWS_IO_EVENT_TYPE_READABLE)) {
return;
}
for (int i = 0; i < 2; ++i) {
err = aws_event_loop_unsubscribe_from_io_events(event_loop, &data->read_handle[i]);
if (err) {
s_unsubrace_error(data);
return;
}
err = aws_event_loop_unsubscribe_from_io_events(event_loop, &data->write_handle[i]);
if (err) {
s_unsubrace_error(data);
return;
}
simple_pipe_close(&data->read_handle[i], &data->write_handle[i]);
}
/* Zero out the handles so that further accesses to the closed pipe are extra likely to cause crashes */
AWS_ZERO_ARRAY(data->read_handle);
AWS_ZERO_ARRAY(data->write_handle);
data->is_unsubscribed = true;
/* Have a short delay before ending test. Any events that fire during that delay would be an error. */
uint64_t time_ns;
err = aws_event_loop_current_clock_time(data->event_loop, &time_ns);
if (err) {
s_unsubrace_error(data);
return;
}
time_ns += aws_timestamp_convert(1, AWS_TIMESTAMP_SECS, AWS_TIMESTAMP_NANOS, NULL);
aws_task_init(&data->task, s_unsubrace_done_task, data, "unsubrace");
aws_event_loop_schedule_task_future(data->event_loop, &data->task, time_ns);
}
static void s_unsubrace_setup_task(struct aws_task *task, void *arg, enum aws_task_status status) {
(void)task;
struct unsubrace_data *data = arg;
int err;
if (status != AWS_TASK_STATUS_RUN_READY) {
s_unsubrace_error(data);
return;
}
for (int i = 0; i < 2; ++i) {
err = simple_pipe_open(&data->read_handle[i], &data->write_handle[i]);
if (err) {
s_unsubrace_error(data);
return;
}
err = aws_event_loop_subscribe_to_io_events(
data->event_loop, &data->write_handle[i], AWS_IO_EVENT_TYPE_WRITABLE, s_unsubrace_on_writable_event, data);
if (err) {
s_unsubrace_error(data);
return;
}
err = aws_event_loop_subscribe_to_io_events(
data->event_loop, &data->read_handle[i], AWS_IO_EVENT_TYPE_READABLE, s_unsubrace_on_readable_event, data);
if (err) {
s_unsubrace_error(data);
return;
}
}
}
static bool s_unsubrace_predicate(void *arg) {
struct unsubrace_data *data = arg;
return data->done;
}
/* Regression test: Ensure that a handle cannot receive an event after it's been unsubscribed.
* This was occuring in the case that there were events on two handles in the same event-loop tick,
* and the first handle to receive its event unsubscribed the other handle.
* Shortname: unsubrace */
static int s_test_event_loop_no_events_after_unsubscribe(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_event_loop *event_loop = aws_event_loop_new_default(allocator, aws_high_res_clock_get_ticks);
ASSERT_NOT_NULL(event_loop);
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
struct unsubrace_data data = {
.mutex = AWS_MUTEX_INIT,
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.event_loop = event_loop,
};
aws_task_init(&data.task, s_unsubrace_setup_task, &data, "no_events_after_unsubscribe");
aws_event_loop_schedule_task_now(event_loop, &data.task);
ASSERT_SUCCESS(aws_mutex_lock(&data.mutex));
ASSERT_SUCCESS(
aws_condition_variable_wait_pred(&data.condition_variable, &data.mutex, s_unsubrace_predicate, &data));
ASSERT_SUCCESS(aws_mutex_unlock(&data.mutex));
ASSERT_SUCCESS(data.result_code);
aws_event_loop_destroy(event_loop);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_no_events_after_unsubscribe, s_test_event_loop_no_events_after_unsubscribe)
/* For testing logic that must occur on the event-loop thread.
* The main thread should give the tester an array of state functions (last entry should be NULL),
* then kick off the tester and then wait for it to be done.
* Each function should return one of:
* - AWS_OP_SUCCESS: continue to next state function
* - AWS_OP_ERRROR: fail the test
* - REMAIN_IN_STATE: try this state function again next time
*/
struct thread_tester;
enum { REMAIN_IN_STATE = -2 };
typedef int(thread_tester_state_fn)(struct thread_tester *tester);
struct thread_tester {
struct aws_allocator *alloc;
struct aws_event_loop *event_loop;
bool done;
int error_code;
struct aws_mutex mutex;
struct aws_condition_variable condition_variable;
thread_tester_state_fn **state_functions;
size_t current_state;
size_t last_printed_state;
/* data for tests */
struct aws_io_handle read_handle;
struct aws_io_handle write_handle;
int read_handle_event_counts[AWS_IO_EVENT_TYPE_ERROR + 1];
int write_handle_event_counts[AWS_IO_EVENT_TYPE_ERROR + 1];
enum { TIMER_NOT_SET, TIMER_WAITING, TIMER_DONE } timer_state;
struct aws_task timer_task;
};
static void s_thread_tester_abort(struct thread_tester *tester) {
aws_mutex_lock(&tester->mutex);
tester->error_code = AWS_OP_ERR;
tester->done = true;
aws_condition_variable_notify_one(&tester->condition_variable);
aws_mutex_unlock(&tester->mutex);
}
static bool s_print_state_transitions = false; /* Set this true to print state transitions */
static void s_thread_tester_print_state(struct thread_tester *tester, const char *state_name) {
if (tester->last_printed_state != tester->current_state) {
if (s_print_state_transitions) {
printf("entering state[%zu]: %s\n", tester->current_state, state_name);
}
tester->last_printed_state = tester->current_state;
}
}
# define PRINT_STATE() s_thread_tester_print_state(tester, __func__)
static void s_thread_tester_update(struct thread_tester *tester) {
thread_tester_state_fn *current_fn;
while (true) {
current_fn = tester->state_functions[tester->current_state];
if (!current_fn) {
/* We've reached the final state, success */
aws_mutex_lock(&tester->mutex);
tester->error_code = AWS_OP_SUCCESS;
tester->done = true;
aws_condition_variable_notify_one(&tester->condition_variable);
aws_mutex_unlock(&tester->mutex);
return;
}
int err = current_fn(tester);
if (err == AWS_OP_SUCCESS) {
/* Go to next state, loop again */
tester->current_state++;
} else if (err == REMAIN_IN_STATE) {
/* End loop, wait for update function to be invoked again */
return;
} else /* AWS_OP_ERR */ {
/* End loop, end tester, end it all */
s_thread_tester_abort(tester);
return;
}
}
}
static void s_thread_tester_update_task(struct aws_task *task, void *arg, enum aws_task_status status) {
(void)task;
struct thread_tester *tester = arg;
if (status != AWS_TASK_STATUS_RUN_READY) {
return s_thread_tester_abort(tester);
}
s_thread_tester_update(tester);
}
static bool s_thread_tester_pred(void *arg) {
struct thread_tester *tester = arg;
return tester->done;
}
static void s_timer_done_task(struct aws_task *task, void *arg, enum aws_task_status status) {
(void)task;
struct thread_tester *tester = arg;
if (status != AWS_TASK_STATUS_RUN_READY) {
return s_thread_tester_abort(tester);
}
tester->timer_state = TIMER_DONE;
s_thread_tester_update(tester);
}
static int s_thread_tester_run(struct aws_allocator *alloc, thread_tester_state_fn *state_functions[]) {
/* Set up tester */
struct thread_tester tester = {
.alloc = alloc,
.event_loop = aws_event_loop_new_default(alloc, aws_high_res_clock_get_ticks),
.mutex = AWS_MUTEX_INIT,
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.state_functions = state_functions,
.last_printed_state = -1,
};
ASSERT_NOT_NULL(tester.event_loop);
ASSERT_SUCCESS(aws_event_loop_run(tester.event_loop));
/* Set up data to test with */
ASSERT_SUCCESS(simple_pipe_open(&tester.read_handle, &tester.write_handle));
aws_task_init(&tester.timer_task, s_timer_done_task, &tester, "timer_done");
/* Wait for tester to finish running its state functions on the event-loop thread */
aws_mutex_lock(&tester.mutex);
struct aws_task task;
aws_task_init(&task, s_thread_tester_update_task, &tester, "thread_tester_update");
aws_event_loop_schedule_task_now(tester.event_loop, &task);
aws_condition_variable_wait_pred(&tester.condition_variable, &tester.mutex, s_thread_tester_pred, &tester);
aws_mutex_unlock(&tester.mutex);
/* Clean up tester*/
aws_event_loop_destroy(tester.event_loop);
/* Clean up data */
simple_pipe_close(&tester.read_handle, &tester.write_handle);
/* Return tester results */
return tester.error_code;
}
/* Count how many times each type of event fires on the readable and writable handles */
static void s_io_event_counter(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
void *user_data) {
(void)event_loop;
(void)handle;
struct thread_tester *tester = user_data;
int *event_counts;
if (handle == &tester->read_handle) {
event_counts = tester->read_handle_event_counts;
} else if (handle == &tester->write_handle) {
event_counts = tester->write_handle_event_counts;
} else {
return s_thread_tester_abort(tester);
}
for (int flag = 1; flag <= AWS_IO_EVENT_TYPE_ERROR; flag <<= 1) {
if (events & flag) {
event_counts[flag] += 1;
}
}
s_thread_tester_update(tester);
}
static int s_state_subscribe(struct thread_tester *tester) {
PRINT_STATE();
ASSERT_SUCCESS(aws_event_loop_subscribe_to_io_events(
tester->event_loop, &tester->read_handle, AWS_IO_EVENT_TYPE_READABLE, s_io_event_counter, tester));
ASSERT_SUCCESS(aws_event_loop_subscribe_to_io_events(
tester->event_loop, &tester->write_handle, AWS_IO_EVENT_TYPE_WRITABLE, s_io_event_counter, tester));
return AWS_OP_SUCCESS;
}
static int s_state_unsubscribe(struct thread_tester *tester) {
PRINT_STATE();
ASSERT_SUCCESS(aws_event_loop_unsubscribe_from_io_events(tester->event_loop, &tester->read_handle));
ASSERT_SUCCESS(aws_event_loop_unsubscribe_from_io_events(tester->event_loop, &tester->write_handle));
return AWS_OP_SUCCESS;
}
/* Remain in state until readable event fires, then reset readable event count and proceed to next state */
static int s_state_on_readable(struct thread_tester *tester) {
PRINT_STATE();
if (tester->read_handle_event_counts[AWS_IO_EVENT_TYPE_READABLE] == 0) {
return REMAIN_IN_STATE;
}
ASSERT_UINT_EQUALS(1, tester->read_handle_event_counts[AWS_IO_EVENT_TYPE_READABLE]);
tester->read_handle_event_counts[AWS_IO_EVENT_TYPE_READABLE] = 0;
return AWS_OP_SUCCESS;
}
/* Remain in state until writable event fires, then reset writable event count and proceed to next state. */
static int s_state_on_writable(struct thread_tester *tester) {
PRINT_STATE();
if (tester->write_handle_event_counts[AWS_IO_EVENT_TYPE_WRITABLE] == 0) {
return REMAIN_IN_STATE;
}
ASSERT_UINT_EQUALS(1, tester->write_handle_event_counts[AWS_IO_EVENT_TYPE_WRITABLE]);
tester->write_handle_event_counts[AWS_IO_EVENT_TYPE_WRITABLE] = 0;
return AWS_OP_SUCCESS;
}
static int s_state_fail_if_more_readable_events(struct thread_tester *tester) {
PRINT_STATE();
ASSERT_INT_EQUALS(0, tester->read_handle_event_counts[AWS_IO_EVENT_TYPE_READABLE]);
return AWS_OP_SUCCESS;
}
static int s_state_fail_if_more_writable_events(struct thread_tester *tester) {
PRINT_STATE();
ASSERT_INT_EQUALS(0, tester->write_handle_event_counts[AWS_IO_EVENT_TYPE_WRITABLE]);
return AWS_OP_SUCCESS;
}
/* Write some data to the pipe */
static int s_state_write_data(struct thread_tester *tester) {
PRINT_STATE();
const uint8_t data_to_copy[] = "abcdefghijklmnopqrstuvwxyz";
size_t num_bytes_written = simple_pipe_write(&tester->write_handle, data_to_copy, sizeof(data_to_copy));
ASSERT_UINT_EQUALS(sizeof(data_to_copy), num_bytes_written);
return AWS_OP_SUCCESS;
}
/* Read from pipe until no data remains */
static int s_state_read_until_blocked(struct thread_tester *tester) {
PRINT_STATE();
uint8_t buffer[512];
while (simple_pipe_read(&tester->read_handle, buffer, sizeof(buffer)) > 0) {
}
return AWS_OP_SUCCESS;
}
/* Entering the state starts a timer, and we remain in this state until the time completes */
static int s_state_wait_1sec(struct thread_tester *tester) {
PRINT_STATE();
uint64_t time_ns;
switch (tester->timer_state) {
case TIMER_NOT_SET:
time_ns = 0;
ASSERT_SUCCESS(aws_event_loop_current_clock_time(tester->event_loop, &time_ns));
time_ns += aws_timestamp_convert(1, AWS_TIMESTAMP_SECS, AWS_TIMESTAMP_NANOS, NULL);
aws_event_loop_schedule_task_future(tester->event_loop, &tester->timer_task, time_ns);
tester->timer_state = TIMER_WAITING;
return REMAIN_IN_STATE;
case TIMER_WAITING:
return REMAIN_IN_STATE;
default:
ASSERT_INT_EQUALS(TIMER_DONE, tester->timer_state);
return AWS_OP_SUCCESS;
}
}
/* Test that subscribe/unubscribe work at all */
static int s_test_event_loop_subscribe_unsubscribe(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
thread_tester_state_fn *state_functions[] = {
s_state_subscribe,
s_state_unsubscribe,
NULL,
};
ASSERT_SUCCESS(s_thread_tester_run(allocator, state_functions));
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_subscribe_unsubscribe, s_test_event_loop_subscribe_unsubscribe)
static int s_test_event_loop_writable_event_on_subscribe(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
thread_tester_state_fn *state_functions[] = {
s_state_subscribe,
s_state_on_writable,
s_state_wait_1sec,
s_state_fail_if_more_writable_events,
s_state_unsubscribe,
NULL,
};
ASSERT_SUCCESS(s_thread_tester_run(allocator, state_functions));
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_writable_event_on_subscribe, s_test_event_loop_writable_event_on_subscribe)
static int s_test_event_loop_no_readable_event_before_write(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
thread_tester_state_fn *state_functions[] = {
s_state_subscribe,
s_state_wait_1sec,
s_state_fail_if_more_readable_events,
s_state_unsubscribe,
NULL,
};
ASSERT_SUCCESS(s_thread_tester_run(allocator, state_functions));
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_no_readable_event_before_write, s_test_event_loop_no_readable_event_before_write);
static int s_test_event_loop_readable_event_on_subscribe_if_data_present(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
thread_tester_state_fn *state_functions[] = {
s_state_write_data,
s_state_subscribe,
s_state_on_readable,
s_state_wait_1sec,
s_state_fail_if_more_readable_events,
s_state_unsubscribe,
NULL,
};
ASSERT_SUCCESS(s_thread_tester_run(allocator, state_functions));
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(
event_loop_readable_event_on_subscribe_if_data_present,
s_test_event_loop_readable_event_on_subscribe_if_data_present);
static int s_test_event_loop_readable_event_after_write(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
thread_tester_state_fn *state_functions[] = {
s_state_subscribe,
s_state_on_writable,
s_state_write_data,
s_state_on_readable,
s_state_wait_1sec,
s_state_fail_if_more_readable_events,
s_state_unsubscribe,
NULL,
};
ASSERT_SUCCESS(s_thread_tester_run(allocator, state_functions));
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_readable_event_after_write, s_test_event_loop_readable_event_after_write);
static int s_test_event_loop_readable_event_on_2nd_time_readable(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
thread_tester_state_fn *state_functions[] = {
s_state_subscribe,
s_state_on_writable,
s_state_write_data,
s_state_on_readable,
s_state_read_until_blocked,
s_state_write_data,
s_state_on_readable,
s_state_unsubscribe,
NULL,
};
ASSERT_SUCCESS(s_thread_tester_run(allocator, state_functions));
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_readable_event_on_2nd_time_readable, s_test_event_loop_readable_event_on_2nd_time_readable);
#endif /* AWS_USE_IO_COMPLETION_PORTS */
static int s_event_loop_test_stop_then_restart(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_event_loop *event_loop = aws_event_loop_new_default(allocator, aws_high_res_clock_get_ticks);
ASSERT_NOT_NULL(event_loop, "Event loop creation failed with error: %s", aws_error_debug_str(aws_last_error()));
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
struct task_args task_args = {
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.mutex = AWS_MUTEX_INIT,
.invoked = false,
.was_in_thread = false,
.status = -1,
.loop = event_loop,
.thread_id = 0,
};
struct aws_task task;
aws_task_init(&task, s_test_task, &task_args, "stop_then_restart");
ASSERT_SUCCESS(aws_mutex_lock(&task_args.mutex));
aws_event_loop_schedule_task_now(event_loop, &task);
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task_args.condition_variable, &task_args.mutex, s_task_ran_predicate, &task_args));
ASSERT_TRUE(task_args.invoked);
ASSERT_SUCCESS(aws_event_loop_stop(event_loop));
ASSERT_SUCCESS(aws_event_loop_wait_for_stop_completion(event_loop));
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
aws_event_loop_schedule_task_now(event_loop, &task);
task_args.invoked = false;
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task_args.condition_variable, &task_args.mutex, s_task_ran_predicate, &task_args));
ASSERT_TRUE(task_args.invoked);
aws_event_loop_destroy(event_loop);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_stop_then_restart, s_event_loop_test_stop_then_restart)
static int s_event_loop_test_multiple_stops(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
struct aws_event_loop *event_loop = aws_event_loop_new_default(allocator, aws_high_res_clock_get_ticks);
ASSERT_NOT_NULL(event_loop, "Event loop creation failed with error: %s", aws_error_debug_str(aws_last_error()));
ASSERT_SUCCESS(aws_event_loop_run(event_loop));
for (int i = 0; i < 8; ++i) {
ASSERT_SUCCESS(aws_event_loop_stop(event_loop));
}
aws_event_loop_destroy(event_loop);
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_multiple_stops, s_event_loop_test_multiple_stops)
static int test_event_loop_group_setup_and_shutdown(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
aws_io_library_init(allocator);
struct aws_event_loop_group *event_loop_group = aws_event_loop_group_new_default(allocator, 0, NULL);
size_t cpu_count = aws_system_info_processor_count();
size_t el_count = aws_event_loop_group_get_loop_count(event_loop_group);
struct aws_event_loop *event_loop = aws_event_loop_group_get_next_loop(event_loop_group);
ASSERT_NOT_NULL(event_loop);
if (cpu_count > 1) {
ASSERT_INT_EQUALS(cpu_count / 2, el_count);
}
if (cpu_count > 1) {
ASSERT_INT_EQUALS(cpu_count / 2, el_count);
}
aws_event_loop_group_release(event_loop_group);
aws_io_library_clean_up();
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_group_setup_and_shutdown, test_event_loop_group_setup_and_shutdown)
static int test_numa_aware_event_loop_group_setup_and_shutdown(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
aws_io_library_init(allocator);
size_t cpus_for_group = aws_get_cpu_count_for_group(0);
size_t el_count = 1;
/* pass UINT16_MAX here to check the boundary conditions on numa cpu detection. It should never create more threads
* than hw cpus available */
struct aws_event_loop_group *event_loop_group =
aws_event_loop_group_new_default_pinned_to_cpu_group(allocator, UINT16_MAX, 0, NULL);
el_count = aws_event_loop_group_get_loop_count(event_loop_group);
size_t hw_thread_count = 0;
struct aws_cpu_info *cpu_info = aws_mem_calloc(allocator, cpus_for_group, sizeof(struct aws_cpu_info));
ASSERT_NOT_NULL(cpu_info);
aws_get_cpu_ids_for_group(0, cpu_info, cpus_for_group);
for (size_t i = 0; i < cpus_for_group; ++i) {
if (!cpu_info[i].suspected_hyper_thread) {
hw_thread_count++;
}
}
aws_mem_release(allocator, cpu_info);
ASSERT_INT_EQUALS(hw_thread_count, el_count);
aws_event_loop_group_release(event_loop_group);
aws_io_library_clean_up();
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(numa_aware_event_loop_group_setup_and_shutdown, test_numa_aware_event_loop_group_setup_and_shutdown)
static void s_async_shutdown_complete_callback(void *user_data) {
struct task_args *args = user_data;
aws_mutex_lock(&args->mutex);
args->thread_id = aws_thread_current_thread_id();
args->invoked = true;
aws_mutex_unlock((&args->mutex));
aws_atomic_store_int(&args->thread_complete, true);
aws_condition_variable_notify_one(&args->condition_variable);
}
static void s_async_shutdown_task(struct aws_task *task, void *user_data, enum aws_task_status status) {
(void)task;
(void)status;
struct aws_event_loop_group *el_group = user_data;
aws_event_loop_group_release(el_group);
}
static int test_event_loop_group_setup_and_shutdown_async(struct aws_allocator *allocator, void *ctx) {
(void)ctx;
aws_io_library_init(allocator);
/*
* Small chicken-and-egg problem here: the task args needs the event loop group and loop, but
* creating the event loop group needs shutdown options that refer to the task args.
*/
struct task_args task_args = {
.condition_variable = AWS_CONDITION_VARIABLE_INIT,
.mutex = AWS_MUTEX_INIT,
.invoked = false,
.was_in_thread = false,
.status = -1,
.loop = NULL,
.el_group = NULL,
.thread_id = 0,
};
aws_atomic_init_int(&task_args.thread_complete, false);
struct aws_shutdown_callback_options async_shutdown_options;
AWS_ZERO_STRUCT(async_shutdown_options);
async_shutdown_options.shutdown_callback_user_data = &task_args;
async_shutdown_options.shutdown_callback_fn = s_async_shutdown_complete_callback;
struct aws_event_loop_group *event_loop_group =
aws_event_loop_group_new_default(allocator, 0, &async_shutdown_options);
struct aws_event_loop *event_loop = aws_event_loop_group_get_next_loop(event_loop_group);
task_args.loop = event_loop;
task_args.el_group = event_loop_group;
struct aws_task task;
aws_task_init(
&task, s_async_shutdown_task, event_loop_group, "async elg shutdown invoked from an event loop thread");
/* Test "future" tasks */
uint64_t now;
ASSERT_SUCCESS(aws_event_loop_current_clock_time(event_loop, &now));
aws_event_loop_schedule_task_future(event_loop, &task, now);
ASSERT_SUCCESS(aws_mutex_lock(&task_args.mutex));
ASSERT_SUCCESS(aws_condition_variable_wait_pred(
&task_args.condition_variable, &task_args.mutex, s_task_ran_predicate, &task_args));
ASSERT_TRUE(task_args.invoked);
aws_mutex_unlock(&task_args.mutex);
while (!aws_atomic_load_int(&task_args.thread_complete)) {
aws_thread_current_sleep(15);
}
aws_io_library_clean_up();
return AWS_OP_SUCCESS;
}
AWS_TEST_CASE(event_loop_group_setup_and_shutdown_async, test_event_loop_group_setup_and_shutdown_async)
|