1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <openssl/aes.h>
#include <openssl/evp.h>
#include "crypto/s2n_cipher.h"
#include "crypto/s2n_ktls_crypto.h"
#include "tls/s2n_crypto.h"
#include "utils/s2n_blob.h"
#include "utils/s2n_safety.h"
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
#define S2N_AEAD_AES_GCM_AVAILABLE
#endif
static uint8_t s2n_aead_cipher_aes128_gcm_available()
{
#if defined(S2N_AEAD_AES_GCM_AVAILABLE)
return (EVP_aead_aes_128_gcm() ? 1 : 0);
#else
return (EVP_aes_128_gcm() ? 1 : 0);
#endif
}
static uint8_t s2n_aead_cipher_aes256_gcm_available()
{
#if defined(S2N_AEAD_AES_GCM_AVAILABLE)
return (EVP_aead_aes_256_gcm() ? 1 : 0);
#else
return (EVP_aes_256_gcm() ? 1 : 0);
#endif
}
#if defined(S2N_AEAD_AES_GCM_AVAILABLE) /* BoringSSL and AWS-LC AEAD API implementation */
static int s2n_aead_cipher_aes_gcm_encrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out)
{
POSIX_ENSURE_REF(in);
POSIX_ENSURE_REF(out);
POSIX_ENSURE_REF(iv);
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(aad);
/* The size of the |in| blob includes the size of the data and the size of the AES-GCM tag */
POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN);
POSIX_ENSURE_GTE(out->size, in->size);
POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN);
/* Adjust input length to account for the Tag length */
size_t in_len = in->size - S2N_TLS_GCM_TAG_LEN;
/* out_len is set by EVP_AEAD_CTX_seal and checked post operation */
size_t out_len = 0;
POSIX_GUARD_OSSL(EVP_AEAD_CTX_seal(key->evp_aead_ctx, out->data, &out_len, out->size, iv->data, iv->size, in->data, in_len, aad->data, aad->size), S2N_ERR_ENCRYPT);
S2N_ERROR_IF((in_len + S2N_TLS_GCM_TAG_LEN) != out_len, S2N_ERR_ENCRYPT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes_gcm_decrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out)
{
POSIX_ENSURE_REF(in);
POSIX_ENSURE_REF(out);
POSIX_ENSURE_REF(iv);
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(aad);
POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN);
POSIX_ENSURE_GTE(out->size, in->size - S2N_TLS_GCM_TAG_LEN);
POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN);
/* out_len is set by EVP_AEAD_CTX_open and checked post operation */
size_t out_len = 0;
POSIX_GUARD_OSSL(EVP_AEAD_CTX_open(key->evp_aead_ctx, out->data, &out_len, out->size, iv->data, iv->size, in->data, in->size, aad->data, aad->size), S2N_ERR_DECRYPT);
S2N_ERROR_IF((in->size - S2N_TLS_GCM_TAG_LEN) != out_len, S2N_ERR_ENCRYPT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes_gcm_init(struct s2n_session_key *key)
{
POSIX_ENSURE_REF(key);
EVP_AEAD_CTX_zero(key->evp_aead_ctx);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes_gcm_destroy_key(struct s2n_session_key *key)
{
POSIX_ENSURE_REF(key);
EVP_AEAD_CTX_cleanup(key->evp_aead_ctx);
return S2N_SUCCESS;
}
#else /* Standard AES-GCM implementation */
static int s2n_aead_cipher_aes_gcm_encrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out)
{
/* The size of the |in| blob includes the size of the data and the size of the AES-GCM tag */
POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN);
POSIX_ENSURE_GTE(out->size, in->size);
POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN);
/* Initialize the IV */
POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, NULL, NULL, NULL, iv->data), S2N_ERR_KEY_INIT);
/* Adjust input length and buffer pointer to account for the Tag length */
int in_len = in->size - S2N_TLS_GCM_TAG_LEN;
uint8_t *tag_data = out->data + out->size - S2N_TLS_GCM_TAG_LEN;
/* out_len is set by EVP_EncryptUpdate and checked post operation */
int out_len = 0;
/* Specify the AAD */
POSIX_GUARD_OSSL(EVP_EncryptUpdate(key->evp_cipher_ctx, NULL, &out_len, aad->data, aad->size), S2N_ERR_ENCRYPT);
/* Encrypt the data */
POSIX_GUARD_OSSL(EVP_EncryptUpdate(key->evp_cipher_ctx, out->data, &out_len, in->data, in_len), S2N_ERR_ENCRYPT);
/* When using AES-GCM, *out_len is the number of bytes written by EVP_EncryptUpdate. Since the tag is not written during this call, we do not take S2N_TLS_GCM_TAG_LEN into account */
S2N_ERROR_IF(in_len != out_len, S2N_ERR_ENCRYPT);
/* Finalize */
POSIX_GUARD_OSSL(EVP_EncryptFinal_ex(key->evp_cipher_ctx, out->data, &out_len), S2N_ERR_ENCRYPT);
/* write the tag */
POSIX_GUARD_OSSL(EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_GET_TAG, S2N_TLS_GCM_TAG_LEN, tag_data), S2N_ERR_ENCRYPT);
/* When using AES-GCM, EVP_EncryptFinal_ex does not write any bytes. So, we should expect *out_len = 0. */
S2N_ERROR_IF(0 != out_len, S2N_ERR_ENCRYPT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes_gcm_decrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out)
{
POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN);
POSIX_ENSURE_GTE(out->size, in->size);
POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN);
/* Initialize the IV */
POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, NULL, NULL, NULL, iv->data), S2N_ERR_KEY_INIT);
/* Adjust input length and buffer pointer to account for the Tag length */
int in_len = in->size - S2N_TLS_GCM_TAG_LEN;
uint8_t *tag_data = in->data + in->size - S2N_TLS_GCM_TAG_LEN;
/* Set the TAG */
POSIX_GUARD_OSSL(EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_TAG, S2N_TLS_GCM_TAG_LEN, tag_data), S2N_ERR_DECRYPT);
/* out_len is set by EVP_DecryptUpdate. While we verify the content of out_len in
* s2n_aead_chacha20_poly1305_encrypt, we refrain from this here. This is to avoid
* doing any branching before the ciphertext is verified. */
int out_len = 0;
/* Specify the AAD */
POSIX_GUARD_OSSL(EVP_DecryptUpdate(key->evp_cipher_ctx, NULL, &out_len, aad->data, aad->size), S2N_ERR_DECRYPT);
int evp_decrypt_rc = 1;
/* Decrypt the data, but don't short circuit tag verification. EVP_Decrypt* return 0 on failure, 1 for success. */
evp_decrypt_rc &= EVP_DecryptUpdate(key->evp_cipher_ctx, out->data, &out_len, in->data, in_len);
/* Verify the tag */
evp_decrypt_rc &= EVP_DecryptFinal_ex(key->evp_cipher_ctx, out->data, &out_len);
S2N_ERROR_IF(evp_decrypt_rc != 1, S2N_ERR_DECRYPT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, EVP_aes_128_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT);
EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL);
POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, EVP_aes_256_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT);
EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL);
POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, EVP_aes_128_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT);
EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL);
POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN);
POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, EVP_aes_256_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT);
EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL);
POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_GUARD(s2n_aead_cipher_aes128_gcm_set_encryption_key(key, in));
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_GUARD(s2n_aead_cipher_aes256_gcm_set_encryption_key(key, in));
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes128_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_GUARD(s2n_aead_cipher_aes128_gcm_set_decryption_key(key, in));
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes256_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in)
{
POSIX_GUARD(s2n_aead_cipher_aes256_gcm_set_decryption_key(key, in));
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes_gcm_init(struct s2n_session_key *key)
{
s2n_evp_ctx_init(key->evp_cipher_ctx);
return S2N_SUCCESS;
}
static int s2n_aead_cipher_aes_gcm_destroy_key(struct s2n_session_key *key)
{
EVP_CIPHER_CTX_cleanup(key->evp_cipher_ctx);
return S2N_SUCCESS;
}
#endif
static S2N_RESULT s2n_tls12_aead_cipher_aes128_gcm_set_ktls_info(
struct s2n_ktls_crypto_info_inputs *in, struct s2n_ktls_crypto_info *out)
{
RESULT_ENSURE_REF(in);
RESULT_ENSURE_REF(out);
s2n_ktls_crypto_info_tls12_aes_gcm_128 *crypto_info = &out->ciphers.aes_gcm_128;
crypto_info->info.version = TLS_1_2_VERSION;
crypto_info->info.cipher_type = TLS_CIPHER_AES_GCM_128;
RESULT_ENSURE_LTE(sizeof(crypto_info->key), in->key.size);
RESULT_CHECKED_MEMCPY(crypto_info->key, in->key.data, sizeof(crypto_info->key));
RESULT_ENSURE_LTE(sizeof(crypto_info->rec_seq), in->seq.size);
RESULT_CHECKED_MEMCPY(crypto_info->rec_seq, in->seq.data, sizeof(crypto_info->rec_seq));
/* TLS1.2 uses partially explicit nonces. That means that although part of the
* nonce is still fixed and implicit (the salt), the remainder is explicit
* (written into the record) and must be unique per record. The RFC5288 suggests
* using the sequence number as the explicit part.
*
* Therefore, ktls expects the salt to contain the iv derived from the secret
* and should generate the remainder of the nonce per-record.
*
* See the TLS1.2 RFC:
* - https://datatracker.ietf.org/doc/html/rfc5246#section-6.2.3.3
* And RFC5288, which defines the TLS1.2 AES-GCM cipher suites:
* - https://datatracker.ietf.org/doc/html/rfc5288#section-3
*/
RESULT_ENSURE_LTE(sizeof(crypto_info->salt), in->iv.size);
RESULT_CHECKED_MEMCPY(crypto_info->salt, in->iv.data, sizeof(crypto_info->salt));
/* Because TLS1.2 uses partially explicit nonces, the kernel should not
* use the iv in crypto_info but instead use a unique value for each record.
*
* As of this commit, Openssl has chosen to set the TLS1.2 IV to random
* bytes when sending and all zeroes when receiving:
* https://github.com/openssl/openssl/blob/de8e0851a1c0d22533801f081781a9f0be56c2c2/ssl/record/methods/ktls_meth.c#L197-L204
* And GnuTLS has chosen to set the TLS1.2 IV to the sequence number:
* https://github.com/gnutls/gnutls/blob/3f42ae70a1672673cb8f27c2dd3da1a34d1cbdd7/lib/system/ktls.c#L547-L550
*
* We (fairly arbitrarily) choose to also set it to the current sequence number.
*/
RESULT_ENSURE_LTE(sizeof(crypto_info->iv), in->seq.size);
RESULT_CHECKED_MEMCPY(crypto_info->iv, in->seq.data, sizeof(crypto_info->iv));
RESULT_GUARD_POSIX(s2n_blob_init(&out->value, (uint8_t *) (void *) crypto_info,
sizeof(s2n_ktls_crypto_info_tls12_aes_gcm_128)));
return S2N_RESULT_OK;
}
/* TLS1.2 AES256 is configured like TLS1.2 AES128, but with a larger key size.
* See TLS1.2 AES128 for details (particularly a discussion of salt + iv).
*/
static S2N_RESULT s2n_tls12_aead_cipher_aes256_gcm_set_ktls_info(
struct s2n_ktls_crypto_info_inputs *in, struct s2n_ktls_crypto_info *out)
{
RESULT_ENSURE_REF(in);
RESULT_ENSURE_REF(out);
s2n_ktls_crypto_info_tls12_aes_gcm_256 *crypto_info = &out->ciphers.aes_gcm_256;
crypto_info->info.version = TLS_1_2_VERSION;
crypto_info->info.cipher_type = TLS_CIPHER_AES_GCM_256;
RESULT_ENSURE_LTE(sizeof(crypto_info->key), in->key.size);
RESULT_CHECKED_MEMCPY(crypto_info->key, in->key.data, sizeof(crypto_info->key));
RESULT_ENSURE_LTE(sizeof(crypto_info->rec_seq), in->seq.size);
RESULT_CHECKED_MEMCPY(crypto_info->rec_seq, in->seq.data, sizeof(crypto_info->rec_seq));
RESULT_ENSURE_LTE(sizeof(crypto_info->salt), in->iv.size);
RESULT_CHECKED_MEMCPY(crypto_info->salt, in->iv.data, sizeof(crypto_info->salt));
RESULT_ENSURE_LTE(sizeof(crypto_info->iv), in->seq.size);
RESULT_CHECKED_MEMCPY(crypto_info->iv, in->seq.data, sizeof(crypto_info->iv));
RESULT_GUARD_POSIX(s2n_blob_init(&out->value, (uint8_t *) (void *) crypto_info,
sizeof(s2n_ktls_crypto_info_tls12_aes_gcm_256)));
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_tls13_aead_cipher_aes128_gcm_set_ktls_info(
struct s2n_ktls_crypto_info_inputs *in, struct s2n_ktls_crypto_info *out)
{
RESULT_ENSURE_REF(in);
RESULT_ENSURE_REF(out);
s2n_ktls_crypto_info_tls12_aes_gcm_128 *crypto_info = &out->ciphers.aes_gcm_128;
crypto_info->info.version = TLS_1_3_VERSION;
crypto_info->info.cipher_type = TLS_CIPHER_AES_GCM_128;
RESULT_ENSURE_LTE(sizeof(crypto_info->key), in->key.size);
RESULT_CHECKED_MEMCPY(crypto_info->key, in->key.data, sizeof(crypto_info->key));
RESULT_ENSURE_LTE(sizeof(crypto_info->rec_seq), in->seq.size);
RESULT_CHECKED_MEMCPY(crypto_info->rec_seq, in->seq.data, sizeof(crypto_info->rec_seq));
/* TLS1.3 uses fully implicit nonces. The fixed, implicit IV value derived from
* the secret is xored with the sequence number to produce a unique per-record nonce.
*
* See the TLS1.3 RFC:
* - https://www.rfc-editor.org/rfc/rfc8446.html#section-5.3
*
* ktls handles this with the same structure as TLS1.2 uses for its partially
* explicit nonces by splitting the implicit IV between the salt and iv fields.
*/
size_t salt_size = sizeof(crypto_info->salt);
RESULT_ENSURE_LTE(salt_size, in->iv.size);
RESULT_CHECKED_MEMCPY(crypto_info->salt, in->iv.data, salt_size);
size_t iv_remainder = in->iv.size - salt_size;
RESULT_ENSURE_LTE(sizeof(crypto_info->iv), iv_remainder);
RESULT_CHECKED_MEMCPY(crypto_info->iv, in->iv.data + salt_size, sizeof(crypto_info->iv));
RESULT_GUARD_POSIX(s2n_blob_init(&out->value, (uint8_t *) (void *) crypto_info,
sizeof(s2n_ktls_crypto_info_tls12_aes_gcm_128)));
return S2N_RESULT_OK;
}
/* TLS1.3 AES256 is configured like TLS1.3 AES128, but with a larger key size.
* See TLS1.3 AES128 for details (particularly a discussion of salt + iv).
*/
static S2N_RESULT s2n_tls13_aead_cipher_aes256_gcm_set_ktls_info(
struct s2n_ktls_crypto_info_inputs *in, struct s2n_ktls_crypto_info *out)
{
RESULT_ENSURE_REF(in);
RESULT_ENSURE_REF(out);
s2n_ktls_crypto_info_tls12_aes_gcm_256 *crypto_info = &out->ciphers.aes_gcm_256;
crypto_info->info.version = TLS_1_3_VERSION;
crypto_info->info.cipher_type = TLS_CIPHER_AES_GCM_256;
RESULT_ENSURE_LTE(sizeof(crypto_info->key), in->key.size);
RESULT_CHECKED_MEMCPY(crypto_info->key, in->key.data, sizeof(crypto_info->key));
RESULT_ENSURE_LTE(sizeof(crypto_info->rec_seq), in->seq.size);
RESULT_CHECKED_MEMCPY(crypto_info->rec_seq, in->seq.data, sizeof(crypto_info->rec_seq));
size_t salt_size = sizeof(crypto_info->salt);
RESULT_ENSURE_LTE(salt_size, in->iv.size);
RESULT_CHECKED_MEMCPY(crypto_info->salt, in->iv.data, salt_size);
size_t iv_remainder = in->iv.size - salt_size;
RESULT_ENSURE_LTE(sizeof(crypto_info->iv), iv_remainder);
RESULT_CHECKED_MEMCPY(crypto_info->iv, in->iv.data + salt_size, sizeof(crypto_info->iv));
RESULT_GUARD_POSIX(s2n_blob_init(&out->value, (uint8_t *) (void *) crypto_info,
sizeof(s2n_ktls_crypto_info_tls12_aes_gcm_256)));
return S2N_RESULT_OK;
}
const struct s2n_cipher s2n_aes128_gcm = {
.key_material_size = S2N_TLS_AES_128_GCM_KEY_LEN,
.type = S2N_AEAD,
.io.aead = {
.record_iv_size = S2N_TLS_GCM_EXPLICIT_IV_LEN,
.fixed_iv_size = S2N_TLS_GCM_FIXED_IV_LEN,
.tag_size = S2N_TLS_GCM_TAG_LEN,
.decrypt = s2n_aead_cipher_aes_gcm_decrypt,
.encrypt = s2n_aead_cipher_aes_gcm_encrypt },
.is_available = s2n_aead_cipher_aes128_gcm_available,
.init = s2n_aead_cipher_aes_gcm_init,
.set_encryption_key = s2n_aead_cipher_aes128_gcm_set_encryption_key,
.set_decryption_key = s2n_aead_cipher_aes128_gcm_set_decryption_key,
.destroy_key = s2n_aead_cipher_aes_gcm_destroy_key,
.set_ktls_info = s2n_tls12_aead_cipher_aes128_gcm_set_ktls_info,
};
const struct s2n_cipher s2n_aes256_gcm = {
.key_material_size = S2N_TLS_AES_256_GCM_KEY_LEN,
.type = S2N_AEAD,
.io.aead = {
.record_iv_size = S2N_TLS_GCM_EXPLICIT_IV_LEN,
.fixed_iv_size = S2N_TLS_GCM_FIXED_IV_LEN,
.tag_size = S2N_TLS_GCM_TAG_LEN,
.decrypt = s2n_aead_cipher_aes_gcm_decrypt,
.encrypt = s2n_aead_cipher_aes_gcm_encrypt },
.is_available = s2n_aead_cipher_aes256_gcm_available,
.init = s2n_aead_cipher_aes_gcm_init,
.set_encryption_key = s2n_aead_cipher_aes256_gcm_set_encryption_key,
.set_decryption_key = s2n_aead_cipher_aes256_gcm_set_decryption_key,
.destroy_key = s2n_aead_cipher_aes_gcm_destroy_key,
.set_ktls_info = s2n_tls12_aead_cipher_aes256_gcm_set_ktls_info,
};
/* TLS 1.3 GCM ciphers */
const struct s2n_cipher s2n_tls13_aes128_gcm = {
.key_material_size = S2N_TLS_AES_128_GCM_KEY_LEN,
.type = S2N_AEAD,
.io.aead = {
.record_iv_size = S2N_TLS13_RECORD_IV_LEN,
.fixed_iv_size = S2N_TLS13_FIXED_IV_LEN,
.tag_size = S2N_TLS_GCM_TAG_LEN,
.decrypt = s2n_aead_cipher_aes_gcm_decrypt,
.encrypt = s2n_aead_cipher_aes_gcm_encrypt },
.is_available = s2n_aead_cipher_aes128_gcm_available,
.init = s2n_aead_cipher_aes_gcm_init,
.set_encryption_key = s2n_aead_cipher_aes128_gcm_set_encryption_key_tls13,
.set_decryption_key = s2n_aead_cipher_aes128_gcm_set_decryption_key_tls13,
.destroy_key = s2n_aead_cipher_aes_gcm_destroy_key,
.set_ktls_info = s2n_tls13_aead_cipher_aes128_gcm_set_ktls_info,
};
const struct s2n_cipher s2n_tls13_aes256_gcm = {
.key_material_size = S2N_TLS_AES_256_GCM_KEY_LEN,
.type = S2N_AEAD,
.io.aead = {
.record_iv_size = S2N_TLS13_RECORD_IV_LEN,
.fixed_iv_size = S2N_TLS13_FIXED_IV_LEN,
.tag_size = S2N_TLS_GCM_TAG_LEN,
.decrypt = s2n_aead_cipher_aes_gcm_decrypt,
.encrypt = s2n_aead_cipher_aes_gcm_encrypt },
.is_available = s2n_aead_cipher_aes256_gcm_available,
.init = s2n_aead_cipher_aes_gcm_init,
.set_encryption_key = s2n_aead_cipher_aes256_gcm_set_encryption_key_tls13,
.set_decryption_key = s2n_aead_cipher_aes256_gcm_set_decryption_key_tls13,
.destroy_key = s2n_aead_cipher_aes_gcm_destroy_key,
.set_ktls_info = s2n_tls13_aead_cipher_aes256_gcm_set_ktls_info,
};
|