1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_drbg.h"
#include <openssl/evp.h>
#include <sys/param.h>
#include "utils/s2n_blob.h"
#include "utils/s2n_random.h"
#include "utils/s2n_safety.h"
static bool ignore_prediction_resistance_for_testing = false;
#define s2n_drbg_key_size(drgb) EVP_CIPHER_CTX_key_length((drbg)->ctx)
#define s2n_drbg_seed_size(drgb) (S2N_DRBG_BLOCK_SIZE + s2n_drbg_key_size(drgb))
/* This function is the same as s2n_increment_sequence_number
but it does not check for overflow, since overflow is
acceptable in DRBG */
S2N_RESULT s2n_increment_drbg_counter(struct s2n_blob *counter)
{
for (uint32_t i = (uint32_t) counter->size; i > 0; i--) {
counter->data[i - 1] += 1;
if (counter->data[i - 1]) {
break;
}
/* seq[i] wrapped, so let it carry */
}
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_block_encrypt(EVP_CIPHER_CTX *ctx, uint8_t in[S2N_DRBG_BLOCK_SIZE], uint8_t out[S2N_DRBG_BLOCK_SIZE])
{
RESULT_ENSURE_REF(ctx);
/* len is set by EVP_EncryptUpdate and checked post operation */
int len = S2N_DRBG_BLOCK_SIZE;
RESULT_GUARD_OSSL(EVP_EncryptUpdate(ctx, out, &len, in, S2N_DRBG_BLOCK_SIZE), S2N_ERR_DRBG);
RESULT_ENSURE_EQ(len, S2N_DRBG_BLOCK_SIZE);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_bits(struct s2n_drbg *drbg, struct s2n_blob *out)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_ENSURE_REF(out);
struct s2n_blob value = { 0 };
RESULT_GUARD_POSIX(s2n_blob_init(&value, drbg->v, sizeof(drbg->v)));
uint32_t block_aligned_size = out->size - (out->size % S2N_DRBG_BLOCK_SIZE);
/* Per NIST SP800-90A 10.2.1.2: */
for (size_t i = 0; i < block_aligned_size; i += S2N_DRBG_BLOCK_SIZE) {
RESULT_GUARD(s2n_increment_drbg_counter(&value));
RESULT_GUARD(s2n_drbg_block_encrypt(drbg->ctx, drbg->v, out->data + i));
drbg->bytes_used += S2N_DRBG_BLOCK_SIZE;
}
if (out->size <= block_aligned_size) {
return S2N_RESULT_OK;
}
uint8_t spare_block[S2N_DRBG_BLOCK_SIZE];
RESULT_GUARD(s2n_increment_drbg_counter(&value));
RESULT_GUARD(s2n_drbg_block_encrypt(drbg->ctx, drbg->v, spare_block));
drbg->bytes_used += S2N_DRBG_BLOCK_SIZE;
RESULT_CHECKED_MEMCPY(out->data + block_aligned_size, spare_block, out->size - block_aligned_size);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_update(struct s2n_drbg *drbg, struct s2n_blob *provided_data)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_ENSURE_REF(provided_data);
RESULT_STACK_BLOB(temp_blob, s2n_drbg_seed_size(drgb), S2N_DRBG_MAX_SEED_SIZE);
RESULT_ENSURE_EQ(provided_data->size, (uint32_t) s2n_drbg_seed_size(drbg));
RESULT_GUARD(s2n_drbg_bits(drbg, &temp_blob));
/* XOR in the provided data */
for (uint32_t i = 0; i < provided_data->size; i++) {
temp_blob.data[i] ^= provided_data->data[i];
}
/* Update the key and value */
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, NULL, NULL, temp_blob.data, NULL), S2N_ERR_DRBG);
RESULT_CHECKED_MEMCPY(drbg->v, temp_blob.data + s2n_drbg_key_size(drbg), S2N_DRBG_BLOCK_SIZE);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_mix_in_entropy(struct s2n_drbg *drbg, struct s2n_blob *entropy, struct s2n_blob *ps)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_ENSURE_REF(entropy);
RESULT_ENSURE_GTE(entropy->size, ps->size);
for (uint32_t i = 0; i < ps->size; i++) {
entropy->data[i] ^= ps->data[i];
}
RESULT_GUARD(s2n_drbg_update(drbg, entropy));
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_seed(struct s2n_drbg *drbg, struct s2n_blob *ps)
{
RESULT_STACK_BLOB(blob, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_GUARD(s2n_get_seed_entropy(&blob));
RESULT_GUARD(s2n_drbg_mix_in_entropy(drbg, &blob, ps));
drbg->bytes_used = 0;
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_mix(struct s2n_drbg *drbg, struct s2n_blob *ps)
{
if (s2n_unlikely(ignore_prediction_resistance_for_testing)) {
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
return S2N_RESULT_OK;
}
RESULT_STACK_BLOB(blob, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_GUARD(s2n_get_mix_entropy(&blob));
RESULT_GUARD(s2n_drbg_mix_in_entropy(drbg, &blob, ps));
drbg->mixes += 1;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_instantiate(struct s2n_drbg *drbg, struct s2n_blob *personalization_string, const s2n_drbg_mode mode)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(personalization_string);
drbg->ctx = EVP_CIPHER_CTX_new();
RESULT_GUARD_PTR(drbg->ctx);
RESULT_EVP_CTX_INIT(drbg->ctx);
switch (mode) {
case S2N_AES_128_CTR_NO_DF_PR:
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, EVP_aes_128_ecb(), NULL, NULL, NULL), S2N_ERR_DRBG);
break;
case S2N_AES_256_CTR_NO_DF_PR:
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, EVP_aes_256_ecb(), NULL, NULL, NULL), S2N_ERR_DRBG);
break;
default:
RESULT_BAIL(S2N_ERR_DRBG);
}
RESULT_ENSURE_LTE(s2n_drbg_key_size(drbg), S2N_DRBG_MAX_KEY_SIZE);
RESULT_ENSURE_LTE(s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
static const uint8_t zero_key[S2N_DRBG_MAX_KEY_SIZE] = { 0 };
/* Start off with zeroed data, per 10.2.1.3.1 item 4 and 5 */
memset(drbg->v, 0, sizeof(drbg->v));
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, NULL, NULL, zero_key, NULL), S2N_ERR_DRBG);
/* Copy the personalization string */
RESULT_STACK_BLOB(ps, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_GUARD_POSIX(s2n_blob_zero(&ps));
RESULT_CHECKED_MEMCPY(ps.data, personalization_string->data, MIN(ps.size, personalization_string->size));
/* Seed the DRBG */
RESULT_GUARD(s2n_drbg_seed(drbg, &ps));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_generate(struct s2n_drbg *drbg, struct s2n_blob *blob)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_STACK_BLOB(zeros, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_ENSURE(blob->size <= S2N_DRBG_GENERATE_LIMIT, S2N_ERR_DRBG_REQUEST_SIZE);
/* Mix in additional entropy for every randomness generation call. This
* defense mechanism is referred to as "prediction resistance".
* If we ever relax this defense, we must:
* 1. Implement reseeding according to limit specified in
* NIST SP800-90A 10.2.1 Table 3.
* 2. Re-consider whether the current fork detection strategy is still
* sufficient.
*/
RESULT_GUARD(s2n_drbg_mix(drbg, &zeros));
RESULT_GUARD(s2n_drbg_bits(drbg, blob));
RESULT_GUARD(s2n_drbg_update(drbg, &zeros));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_wipe(struct s2n_drbg *drbg)
{
RESULT_ENSURE_REF(drbg);
if (drbg->ctx) {
RESULT_GUARD_OSSL(EVP_CIPHER_CTX_cleanup(drbg->ctx), S2N_ERR_DRBG);
EVP_CIPHER_CTX_free(drbg->ctx);
drbg->ctx = NULL;
}
*drbg = (struct s2n_drbg){ 0 };
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_bytes_used(struct s2n_drbg *drbg, uint64_t *bytes_used)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(bytes_used);
*bytes_used = drbg->bytes_used;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_ignore_prediction_resistance_for_testing(bool ignore_bool)
{
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
ignore_prediction_resistance_for_testing = ignore_bool;
return S2N_RESULT_OK;
}
|