1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
/* this file is patched by Sidetrail, clang-format invalidates patches */
/* clang-format off */
#include <openssl/md5.h>
#include <openssl/sha.h>
#include "error/s2n_errno.h"
#include "crypto/s2n_hmac.h"
#include "crypto/s2n_hash.h"
#include "crypto/s2n_fips.h"
#include "utils/s2n_safety.h"
#include "utils/s2n_blob.h"
#include "utils/s2n_mem.h"
#include <stdint.h>
int s2n_hash_hmac_alg(s2n_hash_algorithm hash_alg, s2n_hmac_algorithm *out)
{
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(out, sizeof(*out)), S2N_ERR_PRECONDITION_VIOLATION);
switch(hash_alg) {
case S2N_HASH_NONE: *out = S2N_HMAC_NONE; break;
case S2N_HASH_MD5: *out = S2N_HMAC_MD5; break;
case S2N_HASH_SHA1: *out = S2N_HMAC_SHA1; break;
case S2N_HASH_SHA224: *out = S2N_HMAC_SHA224; break;
case S2N_HASH_SHA256: *out = S2N_HMAC_SHA256; break;
case S2N_HASH_SHA384: *out = S2N_HMAC_SHA384; break;
case S2N_HASH_SHA512: *out = S2N_HMAC_SHA512; break;
case S2N_HASH_MD5_SHA1: /* Fall through ... */
default:
POSIX_BAIL(S2N_ERR_HASH_INVALID_ALGORITHM);
}
return S2N_SUCCESS;
}
int s2n_hmac_hash_alg(s2n_hmac_algorithm hmac_alg, s2n_hash_algorithm *out)
{
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(out, sizeof(*out)), S2N_ERR_PRECONDITION_VIOLATION);
switch(hmac_alg) {
case S2N_HMAC_NONE: *out = S2N_HASH_NONE; break;
case S2N_HMAC_MD5: *out = S2N_HASH_MD5; break;
case S2N_HMAC_SHA1: *out = S2N_HASH_SHA1; break;
case S2N_HMAC_SHA224: *out = S2N_HASH_SHA224; break;
case S2N_HMAC_SHA256: *out = S2N_HASH_SHA256; break;
case S2N_HMAC_SHA384: *out = S2N_HASH_SHA384; break;
case S2N_HMAC_SHA512: *out = S2N_HASH_SHA512; break;
case S2N_HMAC_SSLv3_MD5: *out = S2N_HASH_MD5; break;
case S2N_HMAC_SSLv3_SHA1: *out = S2N_HASH_SHA1; break;
default:
POSIX_BAIL(S2N_ERR_HMAC_INVALID_ALGORITHM);
}
return S2N_SUCCESS;
}
int s2n_hmac_digest_size(s2n_hmac_algorithm hmac_alg, uint8_t *out)
{
s2n_hash_algorithm hash_alg;
POSIX_GUARD(s2n_hmac_hash_alg(hmac_alg, &hash_alg));
POSIX_GUARD(s2n_hash_digest_size(hash_alg, out));
return S2N_SUCCESS;
}
/* Return 1 if hmac algorithm is available, 0 otherwise. */
bool s2n_hmac_is_available(s2n_hmac_algorithm hmac_alg)
{
switch(hmac_alg) {
case S2N_HMAC_MD5:
case S2N_HMAC_SSLv3_MD5:
case S2N_HMAC_SSLv3_SHA1:
/* Some libcryptos, such as OpenSSL, disable MD5 by default when in FIPS mode, which is
* required in order to negotiate SSLv3. However, this is supported in AWS-LC.
*/
return !s2n_is_in_fips_mode() || s2n_libcrypto_is_awslc();
case S2N_HMAC_NONE:
case S2N_HMAC_SHA1:
case S2N_HMAC_SHA224:
case S2N_HMAC_SHA256:
case S2N_HMAC_SHA384:
case S2N_HMAC_SHA512:
return true;
}
return false;
}
static int s2n_sslv3_mac_init(struct s2n_hmac_state *state, s2n_hmac_algorithm alg, const void *key, uint32_t klen)
{
for (int i = 0; i < state->xor_pad_size; i++) {
state->xor_pad[i] = 0x36;
}
POSIX_GUARD(s2n_hash_update(&state->inner_just_key, key, klen));
POSIX_GUARD(s2n_hash_update(&state->inner_just_key, state->xor_pad, state->xor_pad_size));
for (int i = 0; i < state->xor_pad_size; i++) {
state->xor_pad[i] = 0x5c;
}
POSIX_GUARD(s2n_hash_update(&state->outer_just_key, key, klen));
POSIX_GUARD(s2n_hash_update(&state->outer_just_key, state->xor_pad, state->xor_pad_size));
return S2N_SUCCESS;
}
static int s2n_tls_hmac_init(struct s2n_hmac_state *state, s2n_hmac_algorithm alg, const void *key, uint32_t klen)
{
memset(&state->xor_pad, 0, sizeof(state->xor_pad));
if (klen > state->xor_pad_size) {
POSIX_GUARD(s2n_hash_update(&state->outer, key, klen));
POSIX_GUARD(s2n_hash_digest(&state->outer, state->digest_pad, state->digest_size));
POSIX_CHECKED_MEMCPY(state->xor_pad, state->digest_pad, state->digest_size);
} else {
POSIX_CHECKED_MEMCPY(state->xor_pad, key, klen);
}
for (int i = 0; i < state->xor_pad_size; i++) {
state->xor_pad[i] ^= 0x36;
}
POSIX_GUARD(s2n_hash_update(&state->inner_just_key, state->xor_pad, state->xor_pad_size));
/* 0x36 xor 0x5c == 0x6a */
for (int i = 0; i < state->xor_pad_size; i++) {
state->xor_pad[i] ^= 0x6a;
}
POSIX_GUARD(s2n_hash_update(&state->outer_just_key, state->xor_pad, state->xor_pad_size));
return S2N_SUCCESS;
}
int s2n_hmac_xor_pad_size(s2n_hmac_algorithm hmac_alg, uint16_t *xor_pad_size)
{
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(xor_pad_size, sizeof(*xor_pad_size)), S2N_ERR_PRECONDITION_VIOLATION);
switch(hmac_alg) {
case S2N_HMAC_NONE: *xor_pad_size = 64; break;
case S2N_HMAC_MD5: *xor_pad_size = 64; break;
case S2N_HMAC_SHA1: *xor_pad_size = 64; break;
case S2N_HMAC_SHA224: *xor_pad_size = 64; break;
case S2N_HMAC_SHA256: *xor_pad_size = 64; break;
case S2N_HMAC_SHA384: *xor_pad_size = 128; break;
case S2N_HMAC_SHA512: *xor_pad_size = 128; break;
case S2N_HMAC_SSLv3_MD5: *xor_pad_size = 48; break;
case S2N_HMAC_SSLv3_SHA1: *xor_pad_size = 40; break;
default:
POSIX_BAIL(S2N_ERR_HMAC_INVALID_ALGORITHM);
}
return S2N_SUCCESS;
}
int s2n_hmac_hash_block_size(s2n_hmac_algorithm hmac_alg, uint16_t *block_size)
{
POSIX_ENSURE(S2N_MEM_IS_WRITABLE_CHECK(block_size, sizeof(*block_size)), S2N_ERR_PRECONDITION_VIOLATION);
switch(hmac_alg) {
case S2N_HMAC_NONE: *block_size = 64; break;
case S2N_HMAC_MD5: *block_size = 64; break;
case S2N_HMAC_SHA1: *block_size = 64; break;
case S2N_HMAC_SHA224: *block_size = 64; break;
case S2N_HMAC_SHA256: *block_size = 64; break;
case S2N_HMAC_SHA384: *block_size = 128; break;
case S2N_HMAC_SHA512: *block_size = 128; break;
case S2N_HMAC_SSLv3_MD5: *block_size = 64; break;
case S2N_HMAC_SSLv3_SHA1: *block_size = 64; break;
default:
POSIX_BAIL(S2N_ERR_HMAC_INVALID_ALGORITHM);
}
return S2N_SUCCESS;
}
int s2n_hmac_new(struct s2n_hmac_state *state)
{
POSIX_ENSURE_REF(state);
POSIX_GUARD(s2n_hash_new(&state->inner));
POSIX_GUARD(s2n_hash_new(&state->inner_just_key));
POSIX_GUARD(s2n_hash_new(&state->outer));
POSIX_GUARD(s2n_hash_new(&state->outer_just_key));
POSIX_POSTCONDITION(s2n_hmac_state_validate(state));
return S2N_SUCCESS;
}
S2N_RESULT s2n_hmac_state_validate(struct s2n_hmac_state *state)
{
RESULT_ENSURE_REF(state);
RESULT_GUARD(s2n_hash_state_validate(&state->inner));
RESULT_GUARD(s2n_hash_state_validate(&state->inner_just_key));
RESULT_GUARD(s2n_hash_state_validate(&state->outer));
RESULT_GUARD(s2n_hash_state_validate(&state->outer_just_key));
return S2N_RESULT_OK;
}
int s2n_hmac_init(struct s2n_hmac_state *state, s2n_hmac_algorithm alg, const void *key, uint32_t klen)
{
POSIX_ENSURE_REF(state);
if (!s2n_hmac_is_available(alg)) {
/* Prevent hmacs from being used if they are not available. */
POSIX_BAIL(S2N_ERR_HMAC_INVALID_ALGORITHM);
}
state->alg = alg;
POSIX_GUARD(s2n_hmac_hash_block_size(alg, &state->hash_block_size));
state->currently_in_hash_block = 0;
POSIX_GUARD(s2n_hmac_xor_pad_size(alg, &state->xor_pad_size));
POSIX_GUARD(s2n_hmac_digest_size(alg, &state->digest_size));
POSIX_ENSURE_GTE(sizeof(state->xor_pad), state->xor_pad_size);
POSIX_ENSURE_GTE(sizeof(state->digest_pad), state->digest_size);
/* key needs to be as large as the biggest block size */
POSIX_ENSURE_GTE(sizeof(state->xor_pad), state->hash_block_size);
s2n_hash_algorithm hash_alg;
POSIX_GUARD(s2n_hmac_hash_alg(alg, &hash_alg));
POSIX_GUARD(s2n_hash_init(&state->inner, hash_alg));
POSIX_GUARD(s2n_hash_init(&state->inner_just_key, hash_alg));
POSIX_GUARD(s2n_hash_init(&state->outer, hash_alg));
POSIX_GUARD(s2n_hash_init(&state->outer_just_key, hash_alg));
if (alg == S2N_HMAC_SSLv3_SHA1 || alg == S2N_HMAC_SSLv3_MD5) {
POSIX_GUARD(s2n_sslv3_mac_init(state, alg, key, klen));
} else {
POSIX_GUARD(s2n_tls_hmac_init(state, alg, key, klen));
}
/* Once we have produced inner_just_key and outer_just_key, don't need the key material in xor_pad, so wipe it.
* Since xor_pad is used as a source of bytes in s2n_hmac_digest_two_compression_rounds,
* this also prevents uninitilized bytes being used.
*/
memset(&state->xor_pad, 0, sizeof(state->xor_pad));
POSIX_GUARD(s2n_hmac_reset(state));
return S2N_SUCCESS;
}
int s2n_hmac_update(struct s2n_hmac_state *state, const void *in, uint32_t size)
{
POSIX_PRECONDITION(s2n_hmac_state_validate(state));
POSIX_ENSURE(state->hash_block_size != 0, S2N_ERR_PRECONDITION_VIOLATION);
/* Keep track of how much of the current hash block is full
*
* Why the 4294949760 constant in this code? 4294949760 is the highest 32-bit
* value that is congruent to 0 modulo all of our HMAC block sizes, that is also
* at least 16k smaller than 2^32. It therefore has no effect on the mathematical
* result, and no valid record size can cause it to overflow.
*
* The value was found with the following python code;
*
* x = (2 ** 32) - (2 ** 14)
* while True:
* if x % 40 | x % 48 | x % 64 | x % 128 == 0:
* break
* x -= 1
* print x
*
* What it does do however is ensure that the mod operation takes a
* constant number of instruction cycles, regardless of the size of the
* input. On some platforms, including Intel, the operation can take a
* smaller number of cycles if the input is "small".
*/
const uint32_t HIGHEST_32_BIT = 4294949760;
POSIX_ENSURE(size <= (UINT32_MAX - HIGHEST_32_BIT), S2N_ERR_INTEGER_OVERFLOW);
uint32_t value = (HIGHEST_32_BIT + size) % state->hash_block_size;
POSIX_GUARD(s2n_add_overflow(state->currently_in_hash_block, value, &state->currently_in_hash_block));
state->currently_in_hash_block %= state->hash_block_size;
return s2n_hash_update(&state->inner, in, size);
}
int s2n_hmac_digest(struct s2n_hmac_state *state, void *out, uint32_t size)
{
POSIX_PRECONDITION(s2n_hmac_state_validate(state));
POSIX_GUARD(s2n_hash_digest(&state->inner, state->digest_pad, state->digest_size));
POSIX_GUARD(s2n_hash_copy(&state->outer, &state->outer_just_key));
POSIX_GUARD(s2n_hash_update(&state->outer, state->digest_pad, state->digest_size));
return s2n_hash_digest(&state->outer, out, size);
}
int s2n_hmac_digest_two_compression_rounds(struct s2n_hmac_state *state, void *out, uint32_t size)
{
/* Do the "real" work of this function. */
POSIX_GUARD(s2n_hmac_digest(state, out, size));
/* If there were 9 or more bytes of space left in the current hash block
* then the serialized length, plus an 0x80 byte, will have fit in that block.
* If there were fewer than 9 then adding the length will have caused an extra
* compression block round. This digest function always does two compression rounds,
* even if there is no need for the second.
*
* 17 bytes if the block size is 128.
*/
const uint8_t space_left = (state->hash_block_size == 128) ? 17 : 9;
if ((int64_t)state->currently_in_hash_block > (state->hash_block_size - space_left)) {
return S2N_SUCCESS;
}
/* Can't reuse a hash after it has been finalized, so reset and push another block in */
POSIX_GUARD(s2n_hash_reset(&state->inner));
/* No-op s2n_hash_update to normalize timing and guard against Lucky13. This does not affect the value of *out. */
return s2n_hash_update(&state->inner, state->xor_pad, state->hash_block_size);
}
int s2n_hmac_free(struct s2n_hmac_state *state)
{
if (state) {
POSIX_GUARD(s2n_hash_free(&state->inner));
POSIX_GUARD(s2n_hash_free(&state->inner_just_key));
POSIX_GUARD(s2n_hash_free(&state->outer));
POSIX_GUARD(s2n_hash_free(&state->outer_just_key));
}
return S2N_SUCCESS;
}
int s2n_hmac_reset(struct s2n_hmac_state *state)
{
POSIX_PRECONDITION(s2n_hmac_state_validate(state));
POSIX_ENSURE(state->hash_block_size != 0, S2N_ERR_PRECONDITION_VIOLATION);
POSIX_GUARD(s2n_hash_copy(&state->inner, &state->inner_just_key));
uint64_t bytes_in_hash;
POSIX_GUARD(s2n_hash_get_currently_in_hash_total(&state->inner, &bytes_in_hash));
bytes_in_hash %= state->hash_block_size;
POSIX_ENSURE(bytes_in_hash <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
/* The length of the key is not private, so don't need to do tricky math here */
state->currently_in_hash_block = bytes_in_hash;
return S2N_SUCCESS;
}
int s2n_hmac_digest_verify(const void *a, const void *b, uint32_t len)
{
return S2N_SUCCESS - !s2n_constant_time_equals(a, b, len);
}
int s2n_hmac_copy(struct s2n_hmac_state *to, struct s2n_hmac_state *from)
{
POSIX_PRECONDITION(s2n_hmac_state_validate(to));
POSIX_PRECONDITION(s2n_hmac_state_validate(from));
/* memcpy cannot be used on s2n_hmac_state as the underlying s2n_hash implementation's
* copy must be used. This is enforced when the s2n_hash implementation is s2n_evp_hash.
*/
to->alg = from->alg;
to->hash_block_size = from->hash_block_size;
to->currently_in_hash_block = from->currently_in_hash_block;
to->xor_pad_size = from->xor_pad_size;
to->digest_size = from->digest_size;
POSIX_GUARD(s2n_hash_copy(&to->inner, &from->inner));
POSIX_GUARD(s2n_hash_copy(&to->inner_just_key, &from->inner_just_key));
POSIX_GUARD(s2n_hash_copy(&to->outer, &from->outer));
POSIX_GUARD(s2n_hash_copy(&to->outer_just_key, &from->outer_just_key));
POSIX_CHECKED_MEMCPY(to->xor_pad, from->xor_pad, sizeof(to->xor_pad));
POSIX_CHECKED_MEMCPY(to->digest_pad, from->digest_pad, sizeof(to->digest_pad));
POSIX_POSTCONDITION(s2n_hmac_state_validate(to));
POSIX_POSTCONDITION(s2n_hmac_state_validate(from));
return S2N_SUCCESS;
}
/* Preserve the handlers for hmac state pointers to avoid re-allocation
* Only valid if the HMAC is in EVP mode
*/
int s2n_hmac_save_evp_hash_state(struct s2n_hmac_evp_backup* backup, struct s2n_hmac_state* hmac)
{
POSIX_ENSURE_REF(backup);
POSIX_PRECONDITION(s2n_hmac_state_validate(hmac));
backup->inner = hmac->inner.digest.high_level;
backup->inner_just_key = hmac->inner_just_key.digest.high_level;
backup->outer = hmac->outer.digest.high_level;
backup->outer_just_key = hmac->outer_just_key.digest.high_level;
return S2N_SUCCESS;
}
int s2n_hmac_restore_evp_hash_state(struct s2n_hmac_evp_backup* backup, struct s2n_hmac_state* hmac)
{
POSIX_ENSURE_REF(backup);
POSIX_PRECONDITION(s2n_hmac_state_validate(hmac));
hmac->inner.digest.high_level = backup->inner;
hmac->inner_just_key.digest.high_level = backup->inner_just_key;
hmac->outer.digest.high_level = backup->outer;
hmac->outer_just_key.digest.high_level = backup->outer_just_key;
POSIX_POSTCONDITION(s2n_hmac_state_validate(hmac));
return S2N_SUCCESS;
}
S2N_RESULT s2n_hmac_md_from_alg(s2n_hmac_algorithm alg, const EVP_MD **md)
{
RESULT_ENSURE_REF(md);
switch (alg) {
case S2N_HMAC_SSLv3_MD5:
case S2N_HMAC_MD5:
*md = EVP_md5();
break;
case S2N_HMAC_SSLv3_SHA1:
case S2N_HMAC_SHA1:
*md = EVP_sha1();
break;
case S2N_HMAC_SHA224:
*md = EVP_sha224();
break;
case S2N_HMAC_SHA256:
*md = EVP_sha256();
break;
case S2N_HMAC_SHA384:
*md = EVP_sha384();
break;
case S2N_HMAC_SHA512:
*md = EVP_sha512();
break;
default:
RESULT_BAIL(S2N_ERR_P_HASH_INVALID_ALGORITHM);
}
return S2N_RESULT_OK;
}
|