1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
# SCRAM mode Python script
import sys
import hmac
import hashlib
from Crypto.Cipher import AES
from Crypto import Random
rndfile = Random.new()
DEBUG_ENABLED = True
# When reading/writing byte strings, the first (aka left-most) byte is the Most Significant Byte (aka Big-Endian)
# (Eg "0x0001", 0x00 is the MSB and 0x01 is the LSB, meaning 0x0001 == 1)
ENDIANNESS = 'big'
def byteStr(val, numBytes):
return val.to_bytes(numBytes, ENDIANNESS)
def debugByteStr(debugStr, byteStrVal):
if DEBUG_ENABLED:
print(debugStr + ": 0x" + byteStrVal.hex().upper())
def debugInt(debugStr, intVal):
if DEBUG_ENABLED:
print(debugStr + ": " + str(intVal))
def scram_generate_key():
# Generate Random 32 Byte Key
K = rndfile.read(32)
debugByteStr("K", K)
return K
def scram_encrypt(K, N, A, M, F):
"""
SCRAM Encryption
Parameters:
K: Key
N: Nonce
A: Additional Authenticated Data
M: Plaintext Message
F: Frame Size
Returns:
C: Ciphertext
X: Excrypted R and Padding Len
Tag: Authentication Tag
"""
# Generate a random 32-byte value R
R = rndfile.read(32)
# Prepare the Padding. We append 0x00 bytes to the end up to the next frame size.
M_LEN = len(M)
PADDING_LEN = 0
if (F > 0):
PADDING_LEN = (F - M_LEN) % F
PADDING_STR = byteStr(0x0, PADDING_LEN)
PADDING_LEN_STR = byteStr(PADDING_LEN, 2)
PADDED_MSG = M + PADDING_STR
debugInt("len(M)", M_LEN)
debugInt("PADDING_LEN", PADDING_LEN)
debugByteStr("PADDING_STR", PADDING_STR)
debugByteStr("PADDING_LEN_STR", PADDING_LEN_STR)
debugByteStr("PADDED_MSG", PADDED_MSG)
# Derive Message encryption key (KE)
# S1 = N || 0x00 0x00 0x00 0x1 || 0^{8} || 0^{8} || 0^{16} || R
S1 = N + byteStr(0x01, 4) + byteStr(0x0, 8) + byteStr(0x0, 8) + byteStr(0x0, 16) + R
U1 = hmac.new(K, S1, hashlib.sha512).digest()
KE = U1[0:32]
# AES_CTR encrypt PADDED_MSG with Nonce N and Key KE
C = AES.new(key=KE, mode=AES.MODE_CTR, nonce=N).encrypt(PADDED_MSG)
# Derive MAC Key (KM) used to with GMAC to generate T
# S2 = N || 0x00 0x00 0x00 0x2 || 0^{8} || 0^{8} || 0^{16} || 0^{32}
S2 = N + byteStr(0x02, 4) + byteStr(0x0, 8) + byteStr(0x0, 8) + byteStr(0x0, 16) + byteStr(0x0, 32)
U2 = hmac.new(K, S2, hashlib.sha512).digest()
KM = U2[0:32]
# GMAC the string A || C , using the GMAC key KM and nonce N
T = AES.new(key=KM, mode=AES.MODE_GCM, nonce=N).update(A + C).digest()
# Derive a one-time pad (U3) from T
# S3 = N || 0x00 0x00 0x00 0x3 || 0^{8} || 0^{8} || T || 0^{32}
S3 = N + byteStr(0x03, 4) + byteStr(0x0, 8) + byteStr(0x0, 8) + T + byteStr(0x0, 32)
U3 = hmac.new(K, S3, hashlib.sha512).digest()
# Encrypt R and PaddingLen with one-time pad U3
Y1 = bytes(a ^ b for (a, b) in zip(U3[0:32], R))
Y0 = bytes(a ^ b for (a, b) in zip(U3[32:34], PADDING_LEN_STR))
X = Y1 + Y0
# Authenticate (Tag) T and R
# S4 = N || 0x00 0x00 0x00 0x4 || A_LEN_STR || M_LEN_STR || T || R
S4 = N + byteStr(0x04, 4) + byteStr(len(A), 8) + byteStr(M_LEN, 8) + T + R
U4 = hmac.new(K, S4, hashlib.sha512).digest()
# Truncate to 16 bytes tag
Tag = U4[0:16]
debugByteStr("S1", S1)
debugByteStr("S2", S2)
debugByteStr("S3", S3)
debugByteStr("S4", S4)
debugByteStr("U1", U1)
debugByteStr("U2", U2)
debugByteStr("U3", U3)
debugByteStr("U4", U4)
debugByteStr("Y0", Y0)
debugByteStr("Y1", Y1)
debugByteStr("T", T)
debugByteStr("KE", KE)
debugByteStr("KM", KM)
debugInt("len(C)", len(C))
debugByteStr("C", C)
debugByteStr("X", X)
debugByteStr("Tag", Tag)
return C, X, Tag
def scram_decrypt(K, N, A, C, X, Tag):
"""
SCRAM Decryption
Parameters:
K: Key
N: Nonce
A: Additional Authenticated Data
C: Ciphertext
X: Encrypted Random value R and Padding Length
Tag: Tag
Returns:
M_calculated: The decrypted Message
"""
# Derive MAC key (KM)
# S2 = N || 0x00 0x00 0x00 0x2 || 0^{8} || 0^{8} || 0^{16} || 0^{32}
S2_calculated = N + byteStr(0x02, 4) + byteStr(0x0, 8) + byteStr(0x0, 8) + byteStr(0x0, 16) + byteStr(0x0, 32)
U2_calculated = hmac.new(K, S2_calculated, hashlib.sha512).digest()
KM_calculated = U2_calculated[0:32]
# Derive T
# T = GMAC (N, A||C, null)
T_calculated = AES.new(key=KM_calculated, mode=AES.MODE_GCM, nonce=N).update(A + C).digest()
# Derive one-time pad U3 from T_calculated,
# S3 = N || 0x00 0x00 0x00 0x3 || 0^{8} || 0^{8} || T || 0^{32}
S3_calculated = N + byteStr(0x03, 4) + byteStr(0x0, 8) + byteStr(0x0, 8) + T_calculated + byteStr(0x0, 32)
U3_calculated = hmac.new(K, S3_calculated, hashlib.sha512).digest()
# Decrypt R and PADDING_LEN, by xor'ing X and U3
R_calculated = bytes(a ^ b for (a, b) in zip(U3_calculated[0:32], X[0:32]))
PADDING_LEN_STR_calculated = bytes(a ^ b for (a, b) in zip(U3_calculated[32:34], X[32:34]))
# Derive Message and Padding Lengths
PADDING_LEN_calculated = int.from_bytes(PADDING_LEN_STR_calculated, ENDIANNESS)
M_LEN_calculated = len(C) - PADDING_LEN_calculated
# Authenticate R
# S4 = N || 0x00 0x00 0x00 0x4 || A_LEN_STR || M_LEN_STR || T || R
S4_calculated = N + byteStr(0x04, 4) + byteStr(len(A), 8) + \
byteStr(M_LEN_calculated, 8) + T_calculated + R_calculated
U4_calculated = hmac.new(K, S4_calculated, hashlib.sha512).digest()
Tag_calculated = U4_calculated[0:16]
if (Tag == Tag_calculated):
print("PASSED: Authentication")
else:
print("FAILED: Authentication")
return None
# Now that Ciphertext and other parameters are authenticated, we can decrypt Ciphertext to get Plaintext
# Derive Message Encryption key (KE)
# S1 = N || 0x00 0x00 0x00 0x1 || 0^{8} || 0^{8} || 0^{16} || R
S1_calculated = N + byteStr(0x01, 4) + byteStr(0x0, 8) + byteStr(0x0, 8) + byteStr(0x0, 16) + R_calculated
U1_calculated = hmac.new(K, S1_calculated, hashlib.sha512).digest()
KE_calculated = U1_calculated[0:32]
# Decrypt Ciphertext
PADDED_MSG_calculated = AES.new(key=KE_calculated, mode=AES.MODE_CTR, nonce=N).decrypt(C)
# Strip off padding bytes
M_calculated = PADDED_MSG_calculated[0:M_LEN_calculated]
if DEBUG_ENABLED:
print("\nDecryption Debug Info: ")
debugByteStr("S1_calculated", S1_calculated)
debugByteStr("S2_calculated", S2_calculated)
debugByteStr("S3_calculated", S3_calculated)
debugByteStr("S4_calculated", S4_calculated)
debugByteStr("U1_calculated", U1_calculated)
debugByteStr("U2_calculated", U2_calculated)
debugByteStr("U3_calculated", U3_calculated)
debugByteStr("U4_calculated", U4_calculated)
debugByteStr("T_calculated", T_calculated)
debugByteStr("R_calculated", R_calculated)
debugByteStr("KE_calculated", KE_calculated)
debugByteStr("KM_calculated", KM_calculated)
debugByteStr("PADDED_MSG_calculated", PADDED_MSG_calculated)
debugByteStr("M_calculated", M_calculated)
return M_calculated
def main(argv):
# Generate Random 28 Byte Message
M = rndfile.read(28)
debugByteStr("M", M)
# Generate Random 28 Byte Additional Authenticated Data
A = rndfile.read(28)
debugByteStr("A", A)
# Generate Random 12 Byte Key
N = rndfile.read(12)
# Frame Size. Messages will be padded up to the next Frame size before being encrypted.
F = 32
debugInt("F", F)
K = scram_generate_key()
C, X, Tag = scram_encrypt(K, N, A, M, F)
M_calculated = scram_decrypt(K, N, A, C, X, Tag)
if (M != M_calculated):
print("FAILED: Decryption")
else:
print("PASSED: Decryption")
return
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
|