1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <stdio.h>
#include <string.h>
#include "api/s2n.h"
#include "crypto/s2n_cipher.h"
#include "crypto/s2n_hmac.h"
#include "s2n_test.h"
#include "stuffer/s2n_stuffer.h"
#include "testlib/s2n_testlib.h"
#include "tls/s2n_cipher_suites.h"
#include "tls/s2n_prf.h"
#include "tls/s2n_record.h"
#include "utils/s2n_random.h"
int main(int argc, char **argv)
{
struct s2n_connection *conn;
uint8_t mac_key[] = "sample mac key";
uint8_t aes128_key[] = "123456789012345";
uint8_t aes256_key[] = "1234567890123456789012345678901";
struct s2n_blob aes128 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&aes128, aes128_key, sizeof(aes128_key)));
struct s2n_blob aes256 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&aes256, aes256_key, sizeof(aes256_key)));
uint8_t random_data[S2N_DEFAULT_FRAGMENT_LENGTH + 1];
struct s2n_blob r = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&r, random_data, sizeof(random_data)));
BEGIN_TEST();
EXPECT_SUCCESS(s2n_disable_tls13_in_test());
EXPECT_NOT_NULL(conn = s2n_connection_new(S2N_SERVER));
EXPECT_OK(s2n_get_public_random_data(&r));
/* Peer and we are in sync */
conn->server = conn->secure;
conn->client = conn->secure;
/* test the AES128 cipher with a SHA1 hash */
conn->secure->cipher_suite->record_alg = &s2n_record_alg_aes128_sha;
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->init(&conn->secure->server_key));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->init(&conn->secure->client_key));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure->server_key, &aes128));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure->client_key, &aes128));
EXPECT_SUCCESS(s2n_hmac_init(&conn->secure->client_record_mac, S2N_HMAC_SHA1, mac_key, sizeof(mac_key)));
EXPECT_SUCCESS(s2n_hmac_init(&conn->secure->server_record_mac, S2N_HMAC_SHA1, mac_key, sizeof(mac_key)));
conn->actual_protocol_version = S2N_TLS11;
for (size_t i = 0; i <= S2N_DEFAULT_FRAGMENT_LENGTH + 1; i++) {
struct s2n_blob in = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&in, random_data, i));
int bytes_written;
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->out));
s2n_result result = s2n_record_write(conn, TLS_APPLICATION_DATA, &in);
if (i <= S2N_DEFAULT_FRAGMENT_LENGTH) {
EXPECT_OK(result);
bytes_written = i;
} else {
EXPECT_ERROR_WITH_ERRNO(result, S2N_ERR_FRAGMENT_LENGTH_TOO_LARGE);
bytes_written = S2N_DEFAULT_FRAGMENT_LENGTH;
}
uint16_t predicted_length = bytes_written + 1 + 20 + 16;
if (predicted_length % 16) {
predicted_length += (16 - (predicted_length % 16));
}
EXPECT_EQUAL(conn->out.blob.data[0], TLS_APPLICATION_DATA);
EXPECT_EQUAL(conn->out.blob.data[1], 3);
EXPECT_EQUAL(conn->out.blob.data[2], 2);
EXPECT_EQUAL(conn->out.blob.data[3], (predicted_length >> 8) & 0xff);
EXPECT_EQUAL(conn->out.blob.data[4], predicted_length & 0xff);
/* The data should be encrypted */
if (bytes_written > 10) {
EXPECT_NOT_EQUAL(memcmp(conn->out.blob.data + 5, random_data, bytes_written), 0);
}
/* Copy the encrypted out data to the in data */
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->in));
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->header_in));
EXPECT_SUCCESS(s2n_stuffer_copy(&conn->out, &conn->header_in, 5));
EXPECT_SUCCESS(s2n_stuffer_copy(&conn->out, &conn->in, s2n_stuffer_data_available(&conn->out)));
/* Let's decrypt it */
uint8_t content_type;
uint16_t fragment_length;
EXPECT_SUCCESS(s2n_record_header_parse(conn, &content_type, &fragment_length));
EXPECT_SUCCESS(s2n_record_parse(conn));
EXPECT_EQUAL(content_type, TLS_APPLICATION_DATA);
EXPECT_EQUAL(fragment_length, predicted_length);
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->header_in));
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->in));
}
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->destroy_key(&conn->secure->server_key));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->destroy_key(&conn->secure->client_key));
EXPECT_SUCCESS(s2n_connection_free(conn));
/* test the AES256 cipher with a SHA1 hash */
EXPECT_NOT_NULL(conn = s2n_connection_new(S2N_SERVER));
conn->server = conn->secure;
conn->client = conn->secure;
conn->secure->cipher_suite->record_alg = &s2n_record_alg_aes256_sha;
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->init(&conn->secure->server_key));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->init(&conn->secure->client_key));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure->server_key, &aes256));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure->client_key, &aes256));
EXPECT_SUCCESS(s2n_hmac_init(&conn->secure->client_record_mac, S2N_HMAC_SHA1, mac_key, sizeof(mac_key)));
EXPECT_SUCCESS(s2n_hmac_init(&conn->secure->server_record_mac, S2N_HMAC_SHA1, mac_key, sizeof(mac_key)));
conn->actual_protocol_version = S2N_TLS11;
for (size_t i = 0; i <= S2N_DEFAULT_FRAGMENT_LENGTH + 1; i++) {
struct s2n_blob in = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&in, random_data, i));
int bytes_written;
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->out));
s2n_result result = s2n_record_write(conn, TLS_APPLICATION_DATA, &in);
if (i <= S2N_DEFAULT_FRAGMENT_LENGTH) {
EXPECT_OK(result);
bytes_written = i;
} else {
EXPECT_ERROR_WITH_ERRNO(result, S2N_ERR_FRAGMENT_LENGTH_TOO_LARGE);
bytes_written = S2N_DEFAULT_FRAGMENT_LENGTH;
}
uint16_t predicted_length = bytes_written + 1 + 20 + 16;
if (predicted_length % 16) {
predicted_length += (16 - (predicted_length % 16));
}
EXPECT_EQUAL(conn->out.blob.data[0], TLS_APPLICATION_DATA);
EXPECT_EQUAL(conn->out.blob.data[1], 3);
EXPECT_EQUAL(conn->out.blob.data[2], 2);
EXPECT_EQUAL(conn->out.blob.data[3], (predicted_length >> 8) & 0xff);
EXPECT_EQUAL(conn->out.blob.data[4], predicted_length & 0xff);
/* The data should be encrypted */
if (bytes_written > 10) {
EXPECT_NOT_EQUAL(memcmp(conn->out.blob.data + 5, random_data, bytes_written), 0);
}
/* Copy the encrypted out data to the in data */
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->in));
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->header_in));
EXPECT_SUCCESS(s2n_stuffer_copy(&conn->out, &conn->header_in, 5));
EXPECT_SUCCESS(s2n_stuffer_copy(&conn->out, &conn->in, s2n_stuffer_data_available(&conn->out)));
/* Let's decrypt it */
uint8_t content_type;
uint16_t fragment_length;
EXPECT_SUCCESS(s2n_record_header_parse(conn, &content_type, &fragment_length));
EXPECT_SUCCESS(s2n_record_parse(conn));
EXPECT_EQUAL(content_type, TLS_APPLICATION_DATA);
EXPECT_EQUAL(fragment_length, predicted_length);
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->header_in));
EXPECT_SUCCESS(s2n_stuffer_wipe(&conn->in));
}
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->destroy_key(&conn->secure->server_key));
EXPECT_SUCCESS(conn->secure->cipher_suite->record_alg->cipher->destroy_key(&conn->secure->client_key));
EXPECT_SUCCESS(s2n_connection_free(conn));
END_TEST();
}
|