File: s2n_kem_test.c

package info (click to toggle)
aws-crt-python 0.20.4%2Bdfsg-1~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 72,656 kB
  • sloc: ansic: 381,805; python: 23,008; makefile: 6,251; sh: 4,536; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (513 lines) | stat: -rw-r--r-- 25,090 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */
#include "tls/s2n_kem.h"

#include "crypto/s2n_ecc_evp.h"
#include "crypto/s2n_pq.h"
#include "tests/s2n_test.h"
#include "tls/extensions/s2n_key_share.h"
#include "tls/s2n_cipher_preferences.h"
#include "tls/s2n_kem_preferences.h"
#include "tls/s2n_kex.h"
#include "tls/s2n_tls_parameters.h"
#include "utils/s2n_safety.h"

#define TEST_PUBLIC_KEY_LENGTH 2
const uint8_t TEST_PUBLIC_KEY[] = { 2, 2 };
#define TEST_PRIVATE_KEY_LENGTH 3
const uint8_t TEST_PRIVATE_KEY[] = { 3, 3, 3 };
#define TEST_SHARED_SECRET_LENGTH 4
const uint8_t TEST_SHARED_SECRET[] = { 4, 4, 4, 4 };
#define TEST_CIPHERTEXT_LENGTH 5
const uint8_t TEST_CIPHERTEXT[] = { 5, 5, 5, 5, 5 };

static const uint8_t kyber_iana[S2N_TLS_CIPHER_SUITE_LEN] = { TLS_ECDHE_KYBER_RSA_WITH_AES_256_GCM_SHA384 };
static const uint8_t classic_ecdhe_iana[S2N_TLS_CIPHER_SUITE_LEN] = { TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA };

int alloc_test_kem_params(struct s2n_kem_params *kem_params)
{
    POSIX_GUARD(s2n_alloc(&(kem_params->private_key), TEST_PRIVATE_KEY_LENGTH));
    struct s2n_stuffer private_key_stuffer = { 0 };
    POSIX_GUARD(s2n_stuffer_init(&private_key_stuffer, &(kem_params->private_key)));
    POSIX_GUARD(s2n_stuffer_write_bytes(&private_key_stuffer, TEST_PRIVATE_KEY, TEST_PRIVATE_KEY_LENGTH));

    POSIX_GUARD(s2n_alloc(&(kem_params->public_key), TEST_PUBLIC_KEY_LENGTH));
    struct s2n_stuffer public_key_stuffer = { 0 };
    POSIX_GUARD(s2n_stuffer_init(&public_key_stuffer, &(kem_params->public_key)));
    POSIX_GUARD(s2n_stuffer_write_bytes(&public_key_stuffer, TEST_PUBLIC_KEY, TEST_PUBLIC_KEY_LENGTH));

    POSIX_GUARD(s2n_alloc(&(kem_params->shared_secret), TEST_SHARED_SECRET_LENGTH));
    struct s2n_stuffer shared_secret_stuffer = { 0 };
    POSIX_GUARD(s2n_stuffer_init(&shared_secret_stuffer, &(kem_params->shared_secret)));
    POSIX_GUARD(s2n_stuffer_write_bytes(&shared_secret_stuffer, TEST_SHARED_SECRET, TEST_SHARED_SECRET_LENGTH));

    POSIX_ENSURE_NE(0, kem_params->private_key.allocated);
    POSIX_ENSURE_NE(0, kem_params->public_key.allocated);
    POSIX_ENSURE_NE(0, kem_params->shared_secret.allocated);

    return S2N_SUCCESS;
}

int assert_kem_params_free(struct s2n_kem_params *kem_params)
{
    POSIX_ENSURE_EQ(NULL, kem_params->private_key.data);
    POSIX_ENSURE_EQ(0, kem_params->private_key.size);
    POSIX_ENSURE_EQ(0, kem_params->private_key.allocated);

    POSIX_ENSURE_EQ(NULL, kem_params->public_key.data);
    POSIX_ENSURE_EQ(0, kem_params->public_key.size);
    POSIX_ENSURE_EQ(0, kem_params->public_key.allocated);

    POSIX_ENSURE_EQ(NULL, kem_params->shared_secret.data);
    POSIX_ENSURE_EQ(0, kem_params->shared_secret.size);
    POSIX_ENSURE_EQ(0, kem_params->shared_secret.allocated);

    return S2N_SUCCESS;
}

int s2n_test_generate_keypair(const struct s2n_kem *kem, unsigned char *public_key, unsigned char *private_key)
{
    memset(public_key, kem->public_key_length, kem->public_key_length);
    memset(private_key, kem->private_key_length, kem->private_key_length);
    return 0;
}

int s2n_test_encrypt(const struct s2n_kem *kem, unsigned char *ciphertext, unsigned char *shared_secret, const unsigned char *public_key)
{
    POSIX_GUARD(memcmp(public_key, TEST_PUBLIC_KEY, TEST_PUBLIC_KEY_LENGTH));
    memset(ciphertext, kem->ciphertext_length, kem->ciphertext_length);
    memset(shared_secret, kem->shared_secret_key_length, kem->shared_secret_key_length);
    return 0;
}

int s2n_test_decrypt(const struct s2n_kem *kem, unsigned char *shared_secret, const unsigned char *ciphertext, const unsigned char *private_key)
{
    POSIX_GUARD(memcmp(ciphertext, TEST_CIPHERTEXT, TEST_CIPHERTEXT_LENGTH));
    POSIX_GUARD(memcmp(private_key, TEST_PRIVATE_KEY, TEST_PRIVATE_KEY_LENGTH));
    memset(shared_secret, kem->shared_secret_key_length, kem->shared_secret_key_length);
    return 0;
}

const struct s2n_kem s2n_test_kem = {
    .public_key_length = TEST_PUBLIC_KEY_LENGTH,
    .private_key_length = TEST_PRIVATE_KEY_LENGTH,
    .shared_secret_key_length = TEST_SHARED_SECRET_LENGTH,
    .ciphertext_length = TEST_CIPHERTEXT_LENGTH,
    .generate_keypair = &s2n_test_generate_keypair,
    .encapsulate = &s2n_test_encrypt,
    .decapsulate = &s2n_test_decrypt,
};

int main(int argc, char **argv)
{
    BEGIN_TEST();
    EXPECT_SUCCESS(s2n_disable_tls13_in_test());

    /* Run KEM tests that don't depend on the value of len_prefix */
    {
        /* Regression test for network parsing data of expected sizes */
        EXPECT_EQUAL(sizeof(kem_extension_size), 2);
        EXPECT_EQUAL(sizeof(kem_public_key_size), 2);
        EXPECT_EQUAL(sizeof(kem_private_key_size), 2);
        EXPECT_EQUAL(sizeof(kem_shared_secret_size), 2);
        EXPECT_EQUAL(sizeof(kem_ciphertext_key_size), 2);
    };
    {
        const struct s2n_iana_to_kem *compatible_params = NULL;
        EXPECT_FAILURE_WITH_ERRNO(s2n_cipher_suite_to_kem(classic_ecdhe_iana, &compatible_params), S2N_ERR_KEM_UNSUPPORTED_PARAMS);
        EXPECT_NULL(compatible_params);

        EXPECT_SUCCESS(s2n_cipher_suite_to_kem(kyber_iana, &compatible_params));
        EXPECT_NOT_NULL(compatible_params);
        EXPECT_EQUAL(compatible_params->kem_count, 1);
        EXPECT_EQUAL(compatible_params->kems[0]->kem_extension_id, s2n_kyber_512_r3.kem_extension_id);
    };
    {
        /* Tests for s2n_kem_free() */
        EXPECT_SUCCESS(s2n_kem_free(NULL));

        struct s2n_kem_params kem_params = { 0 };
        EXPECT_SUCCESS(s2n_kem_free(&kem_params));

        /* Fill kem_params with secrets and ensure that they have been freed */
        EXPECT_SUCCESS(alloc_test_kem_params(&kem_params));
        EXPECT_SUCCESS(s2n_kem_free(&kem_params));
        EXPECT_SUCCESS(assert_kem_params_free(&kem_params));
    };
    {
        /* Tests for s2n_kem_group_free() */
        EXPECT_SUCCESS(s2n_kem_group_free(NULL));

        struct s2n_kem_group_params kem_group_params = { 0 };
        EXPECT_SUCCESS(s2n_kem_group_free(&kem_group_params));

        /* Fill the kem_group_params with secrets */
        EXPECT_SUCCESS(alloc_test_kem_params(&kem_group_params.kem_params));
        struct s2n_stuffer wire = { 0 };
        POSIX_GUARD(s2n_stuffer_growable_alloc(&wire, 1024));
        kem_group_params.ecc_params.negotiated_curve = &s2n_ecc_curve_secp256r1;
        POSIX_GUARD(s2n_ecdhe_parameters_send(&kem_group_params.ecc_params, &wire));
        POSIX_GUARD(s2n_stuffer_free(&wire));
        EXPECT_NOT_NULL(kem_group_params.ecc_params.evp_pkey);

        /* Ensure that secrets have been freed */
        EXPECT_SUCCESS(s2n_kem_group_free(&kem_group_params));
        EXPECT_SUCCESS(assert_kem_params_free(&kem_group_params.kem_params));
        EXPECT_NULL(kem_group_params.ecc_params.evp_pkey);
    };
    {
        /* Happy case(s) for s2n_get_kem_from_extension_id() */

        /* The kem_extensions and kems arrays should be kept in sync with each other */
        kem_extension_size kem_extensions[] = {
            TLS_PQ_KEM_EXTENSION_ID_KYBER_512_R3,
        };

        const struct s2n_kem *kems[] = {
            &s2n_kyber_512_r3,
        };

        for (size_t i = 0; i < s2n_array_len(kems); i++) {
            kem_extension_size kem_id = kem_extensions[i];
            const struct s2n_kem *returned_kem = NULL;

            EXPECT_SUCCESS(s2n_get_kem_from_extension_id(kem_id, &returned_kem));
            EXPECT_NOT_NULL(returned_kem);
            EXPECT_EQUAL(kems[i], returned_kem);
        }
    };
    {
        /* Failure cases for s2n_get_kem_from_extension_id() */
        const struct s2n_kem *returned_kem = NULL;
        kem_extension_size non_existent_kem_id = 65535;
        EXPECT_FAILURE_WITH_ERRNO(s2n_get_kem_from_extension_id(non_existent_kem_id, &returned_kem), S2N_ERR_KEM_UNSUPPORTED_PARAMS);
    };

    /* If KEM tests depend on len_prefix, test with both possible values */
    for (int len_prefixed = 0; len_prefixed < 2; len_prefixed++) {
        {
            struct s2n_kem_params server_kem_params = { 0 };
            server_kem_params.kem = &s2n_test_kem;
            server_kem_params.len_prefixed = len_prefixed;
            EXPECT_SUCCESS(s2n_alloc(&server_kem_params.public_key, TEST_PUBLIC_KEY_LENGTH));
            EXPECT_OK(s2n_kem_generate_keypair(&server_kem_params));
            EXPECT_EQUAL(TEST_PUBLIC_KEY_LENGTH, server_kem_params.public_key.size);
            EXPECT_EQUAL(TEST_PRIVATE_KEY_LENGTH, server_kem_params.private_key.size);
            EXPECT_BYTEARRAY_EQUAL(TEST_PUBLIC_KEY, server_kem_params.public_key.data, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_BYTEARRAY_EQUAL(TEST_PRIVATE_KEY, server_kem_params.private_key.data, TEST_PRIVATE_KEY_LENGTH);
            /* KeyGen shouldn't modify the shared secret */
            EXPECT_EQUAL(0, server_kem_params.shared_secret.size);
            EXPECT_EQUAL(0, server_kem_params.shared_secret.allocated);
            EXPECT_NULL(server_kem_params.shared_secret.data);

            struct s2n_kem_params client_kem_params = { 0 };
            client_kem_params.kem = &s2n_test_kem;
            client_kem_params.len_prefixed = len_prefixed;
            /* This would be handled by client/server key exchange methods which isn't being tested */
            POSIX_GUARD(s2n_alloc(&client_kem_params.public_key, TEST_PUBLIC_KEY_LENGTH));
            memset(client_kem_params.public_key.data, TEST_PUBLIC_KEY_LENGTH, TEST_PUBLIC_KEY_LENGTH);

            DEFER_CLEANUP(struct s2n_blob ciphertext = { 0 }, s2n_free);
            POSIX_GUARD(s2n_alloc(&ciphertext, TEST_CIPHERTEXT_LENGTH));

            EXPECT_OK(s2n_kem_encapsulate(&client_kem_params, &ciphertext));
            EXPECT_EQUAL(TEST_SHARED_SECRET_LENGTH, client_kem_params.shared_secret.size);
            EXPECT_EQUAL(TEST_CIPHERTEXT_LENGTH, ciphertext.size);
            EXPECT_BYTEARRAY_EQUAL(TEST_SHARED_SECRET, client_kem_params.shared_secret.data, TEST_SHARED_SECRET_LENGTH);
            EXPECT_BYTEARRAY_EQUAL(TEST_CIPHERTEXT, ciphertext.data, TEST_CIPHERTEXT_LENGTH);
            /* Encaps shouldn't modify the public or private keys */
            EXPECT_EQUAL(TEST_PUBLIC_KEY_LENGTH, client_kem_params.public_key.size);
            EXPECT_BYTEARRAY_EQUAL(TEST_PUBLIC_KEY, client_kem_params.public_key.data, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_EQUAL(0, client_kem_params.private_key.size);
            EXPECT_EQUAL(0, client_kem_params.private_key.allocated);
            EXPECT_NULL(client_kem_params.private_key.data);

            EXPECT_OK(s2n_kem_decapsulate(&server_kem_params, &ciphertext));
            EXPECT_EQUAL(TEST_SHARED_SECRET_LENGTH, server_kem_params.shared_secret.size);
            EXPECT_BYTEARRAY_EQUAL(TEST_SHARED_SECRET, server_kem_params.shared_secret.data, TEST_SHARED_SECRET_LENGTH);
            /* Decaps shouldn't modify the public or private keys */
            EXPECT_EQUAL(TEST_PUBLIC_KEY_LENGTH, server_kem_params.public_key.size);
            EXPECT_BYTEARRAY_EQUAL(TEST_PUBLIC_KEY, server_kem_params.public_key.data, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_EQUAL(TEST_PRIVATE_KEY_LENGTH, server_kem_params.private_key.size);
            EXPECT_BYTEARRAY_EQUAL(TEST_PRIVATE_KEY, server_kem_params.private_key.data, TEST_PRIVATE_KEY_LENGTH);

            EXPECT_SUCCESS(s2n_kem_free(&server_kem_params));
            EXPECT_SUCCESS(s2n_kem_free(&client_kem_params));
        };
        {
            /* Happy case for s2n_kem_send_public_key() */
            struct s2n_kem_params kem_params = { .kem = &s2n_test_kem, .len_prefixed = len_prefixed };

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, TEST_PUBLIC_KEY_LENGTH + 2));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_SUCCESS(s2n_kem_send_public_key(&io_stuffer, &kem_params));

            /* {0, 2} = length of public key to follow
             * {2, 2} = test public key */
            uint8_t prefixed_output[] = { 0, 2, 2, 2 };
            uint8_t unprefixed_output[] = { 2, 2 };

            uint8_t *output = unprefixed_output;
            uint16_t output_len = TEST_PUBLIC_KEY_LENGTH;

            if (len_prefixed) {
                output = prefixed_output;
                output_len = TEST_PUBLIC_KEY_LENGTH + 2;
            }

            EXPECT_BYTEARRAY_EQUAL(io_stuffer.blob.data, output, output_len);

            EXPECT_EQUAL(kem_params.private_key.size, TEST_PRIVATE_KEY_LENGTH);
            EXPECT_BYTEARRAY_EQUAL(kem_params.private_key.data, TEST_PRIVATE_KEY, TEST_PRIVATE_KEY_LENGTH);
            EXPECT_EQUAL(kem_params.public_key.size, 0);
            EXPECT_NULL(kem_params.public_key.data);
            EXPECT_EQUAL(kem_params.shared_secret.size, 0);
            EXPECT_NULL(kem_params.shared_secret.data);

            /* The private key gets alloc'ed in s2n_kem_generate_keypair().
             * Nothing else should have been alloc'ed. */
            EXPECT_EQUAL(0, kem_params.public_key.allocated);
            EXPECT_EQUAL(0, kem_params.shared_secret.allocated);
            EXPECT_NOT_EQUAL(0, kem_params.private_key.allocated);
            EXPECT_SUCCESS(s2n_kem_free(&kem_params));
        };
        {
            /* Failure cases for s2n_kem_send_public_key() */
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_public_key(NULL, NULL), S2N_ERR_NULL);

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, 1));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_public_key(&io_stuffer, NULL), S2N_ERR_NULL);

            struct s2n_kem_params kem_params = { 0 };
            kem_params.len_prefixed = len_prefixed;
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_public_key(&io_stuffer, &kem_params), S2N_ERR_NULL);
        };
        {
            /* Happy case for s2n_kem_send_ciphertext() */
            struct s2n_kem_params kem_params = { .kem = &s2n_test_kem, .len_prefixed = len_prefixed };

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, TEST_CIPHERTEXT_LENGTH + 2));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_SUCCESS(s2n_alloc(&(kem_params.public_key), TEST_PUBLIC_KEY_LENGTH));
            POSIX_CHECKED_MEMCPY(kem_params.public_key.data, TEST_PUBLIC_KEY, TEST_PUBLIC_KEY_LENGTH);

            EXPECT_SUCCESS(s2n_kem_send_ciphertext(&io_stuffer, &kem_params));

            /* {0, 5} = length of ciphertext to follow
             * {5, 5, 5, 5, 5} = test ciphertext */
            uint8_t prefixed_output[] = { 0, 5, 5, 5, 5, 5, 5 };
            uint8_t unprefixed_output[] = { 5, 5, 5, 5, 5 };

            uint8_t *output = unprefixed_output;
            uint16_t output_len = TEST_CIPHERTEXT_LENGTH;

            if (len_prefixed) {
                output = prefixed_output;
                output_len = TEST_CIPHERTEXT_LENGTH + 2;
            }

            EXPECT_BYTEARRAY_EQUAL(io_stuffer.blob.data, output, output_len);

            EXPECT_EQUAL(kem_params.shared_secret.size, TEST_SHARED_SECRET_LENGTH);
            EXPECT_BYTEARRAY_EQUAL(kem_params.shared_secret.data, TEST_SHARED_SECRET, TEST_SHARED_SECRET_LENGTH);
            EXPECT_EQUAL(kem_params.public_key.size, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_BYTEARRAY_EQUAL(kem_params.public_key.data, TEST_PUBLIC_KEY, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_EQUAL(kem_params.private_key.size, 0);
            EXPECT_NULL(kem_params.private_key.data);

            /* We alloc'ed the public key previously in the test; the shared secret was
             * alloc'ed in Encaps; the private key should not have been alloc'ed */
            EXPECT_EQUAL(0, kem_params.private_key.allocated);
            EXPECT_NOT_EQUAL(0, kem_params.public_key.allocated);
            EXPECT_NOT_EQUAL(0, kem_params.public_key.allocated);
            EXPECT_SUCCESS(s2n_kem_free(&kem_params));
        };
        {
            /* Failure cases for s2n_kem_send_ciphertext() */
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_ciphertext(NULL, NULL), S2N_ERR_NULL);

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, 1));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_ciphertext(&io_stuffer, NULL), S2N_ERR_NULL);

            struct s2n_kem_params kem_params = { 0 };
            kem_params.len_prefixed = len_prefixed;
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_ciphertext(&io_stuffer, &kem_params), S2N_ERR_NULL);

            kem_params.kem = &s2n_test_kem;
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_send_ciphertext(&io_stuffer, &kem_params), S2N_ERR_NULL);
        };
        {
            /* Happy case for s2n_kem_recv_ciphertext() */
            struct s2n_kem_params kem_params = { .kem = &s2n_test_kem, .len_prefixed = len_prefixed };

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, TEST_CIPHERTEXT_LENGTH + 2));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_SUCCESS(s2n_alloc(&(kem_params.private_key), TEST_PRIVATE_KEY_LENGTH));
            POSIX_CHECKED_MEMCPY(kem_params.private_key.data, TEST_PRIVATE_KEY, TEST_PRIVATE_KEY_LENGTH);

            /* {0, 5} = length of ciphertext to follow
             * {5, 5, 5, 5, 5} = test ciphertext */
            uint8_t prefixed_input[] = { 0, 5, 5, 5, 5, 5, 5 };
            uint8_t unprefixed_input[] = { 5, 5, 5, 5, 5 };

            uint8_t *input = unprefixed_input;
            uint16_t input_len = TEST_CIPHERTEXT_LENGTH;
            if (len_prefixed) {
                input = prefixed_input;
                input_len = TEST_CIPHERTEXT_LENGTH + 2;
            }

            EXPECT_SUCCESS(s2n_stuffer_write_bytes(&io_stuffer, input, input_len));
            EXPECT_SUCCESS(s2n_stuffer_reread(&io_stuffer));

            EXPECT_SUCCESS(s2n_kem_recv_ciphertext(&io_stuffer, &kem_params));

            EXPECT_EQUAL(kem_params.shared_secret.size, TEST_SHARED_SECRET_LENGTH);
            EXPECT_BYTEARRAY_EQUAL(kem_params.shared_secret.data, TEST_SHARED_SECRET, TEST_SHARED_SECRET_LENGTH);
            EXPECT_EQUAL(0, kem_params.public_key.size);
            EXPECT_NULL(kem_params.public_key.data);

            /* We alloc'ed the private key previously in the test; the shared secret was
             * alloc'ed in Decaps; the public key should not have been alloc'ed */
            EXPECT_EQUAL(0, kem_params.public_key.allocated);
            EXPECT_NOT_EQUAL(0, kem_params.private_key.allocated);
            EXPECT_NOT_EQUAL(0, kem_params.shared_secret.allocated);
            EXPECT_SUCCESS(s2n_kem_free(&kem_params));
        };
        {
            /* Failure cases for s2n_kem_recv_ciphertext() */
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_ciphertext(NULL, NULL), S2N_ERR_NULL);

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, 1));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_ciphertext(&io_stuffer, NULL), S2N_ERR_NULL);

            struct s2n_kem_params kem_params = { 0 };
            kem_params.len_prefixed = len_prefixed;
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_ciphertext(&io_stuffer, &kem_params), S2N_ERR_NULL);

            kem_params.kem = &s2n_test_kem;
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_ciphertext(&io_stuffer, &kem_params), S2N_ERR_NULL);

            /* The given ciphertext length doesn't match the KEM's actual ciphertext length */
            EXPECT_SUCCESS(s2n_alloc(&(kem_params.private_key), TEST_PRIVATE_KEY_LENGTH));
            POSIX_CHECKED_MEMCPY(kem_params.private_key.data, TEST_PRIVATE_KEY, TEST_PRIVATE_KEY_LENGTH);
            DEFER_CLEANUP(struct s2n_blob io_blob_3 = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob_3, TEST_CIPHERTEXT_LENGTH + 2));
            struct s2n_stuffer io_stuffer_3 = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer_3, &io_blob_3));
            uint8_t bad_ct_input_3[] = { 0, 2, 2, 2 };
            EXPECT_SUCCESS(s2n_stuffer_write_bytes(&io_stuffer_3, bad_ct_input_3, 4));
            EXPECT_SUCCESS(s2n_stuffer_reread(&io_stuffer_3));

            if (len_prefixed) {
                EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_ciphertext(&io_stuffer_3, &kem_params), S2N_ERR_BAD_MESSAGE);
            }

            /* We alloc'ed the private key previously in the test; our failure cases for
             * s2n_kem_recv_ciphertext() never reached a point where we alloc'ed anything else */
            EXPECT_NOT_EQUAL(0, kem_params.private_key.allocated);
            EXPECT_EQUAL(0, kem_params.public_key.allocated);
            EXPECT_EQUAL(0, kem_params.shared_secret.allocated);
            EXPECT_SUCCESS(s2n_kem_free(&kem_params));
        };
        {
            /* Happy case for s2n_kem_recv_public_key() */
            struct s2n_kem_params kem_params = { .kem = &s2n_test_kem, .len_prefixed = len_prefixed };

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, TEST_PUBLIC_KEY_LENGTH + 2));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            /* {0, 2} = length of public key to follow
             * {2, 2} = test public key */
            uint8_t prefixed_input[] = { 0, 2, 2, 2 };
            uint8_t unprefixed_input[] = { 2, 2 };

            uint8_t *input = unprefixed_input;
            uint16_t input_len = TEST_PUBLIC_KEY_LENGTH;

            if (len_prefixed) {
                input = prefixed_input;
                input_len = TEST_PUBLIC_KEY_LENGTH + 2;
            }

            EXPECT_SUCCESS(s2n_stuffer_write_bytes(&io_stuffer, input, input_len));
            EXPECT_SUCCESS(s2n_stuffer_reread(&io_stuffer));

            EXPECT_SUCCESS(s2n_kem_recv_public_key(&io_stuffer, &kem_params));

            /* s2n_kem_recv_public_key() should alloc kem_params->public_key and nothing else */
            EXPECT_EQUAL(kem_params.public_key.size, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_NOT_EQUAL(0, kem_params.public_key.allocated);
            EXPECT_BYTEARRAY_EQUAL(kem_params.public_key.data, TEST_PUBLIC_KEY, TEST_PUBLIC_KEY_LENGTH);
            EXPECT_EQUAL(0, kem_params.shared_secret.allocated);
            EXPECT_EQUAL(0, kem_params.private_key.allocated);
            EXPECT_SUCCESS(s2n_kem_free(&kem_params));
        };
        {
            /* Failure cases for s2n_kem_recv_public_key() */
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_public_key(NULL, NULL), S2N_ERR_NULL);

            DEFER_CLEANUP(struct s2n_blob io_blob = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob, 1));
            struct s2n_stuffer io_stuffer = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer, &io_blob));

            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_public_key(&io_stuffer, NULL), S2N_ERR_NULL);

            struct s2n_kem_params kem_params = { 0 };
            kem_params.len_prefixed = len_prefixed;
            EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_public_key(&io_stuffer, &kem_params), S2N_ERR_NULL);

            kem_params.kem = &s2n_test_kem;

            /* The given public key length doesn't match the KEM's actual public key length */
            DEFER_CLEANUP(struct s2n_blob io_blob_3 = { 0 }, s2n_free);
            EXPECT_SUCCESS(s2n_alloc(&io_blob_3, 5));
            struct s2n_stuffer io_stuffer_3 = { 0 };
            EXPECT_SUCCESS(s2n_stuffer_init(&io_stuffer_3, &io_blob_3));
            uint8_t bad_pk_input_3[] = { 0, 3, 3, 3, 3 };
            EXPECT_SUCCESS(s2n_stuffer_write_bytes(&io_stuffer_3, bad_pk_input_3, 5));
            EXPECT_SUCCESS(s2n_stuffer_reread(&io_stuffer_3));
            if (len_prefixed) {
                EXPECT_FAILURE_WITH_ERRNO(s2n_kem_recv_public_key(&io_stuffer_3, &kem_params), S2N_ERR_BAD_MESSAGE);
            }
        };
    }

    END_TEST();
}