1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#ifdef __FreeBSD__
/* FreeBSD requires POSIX compatibility off for its syscalls (enables __BSD_VISIBLE)
* Without the below line, <sys/wait.h> cannot be imported (it requires __BSD_VISIBLE) */
#undef _POSIX_C_SOURCE
#else
/* For clone() */
#define _GNU_SOURCE
#endif
#include "utils/s2n_random.h"
#include <openssl/rand.h>
#include <pthread.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include "api/s2n.h"
#include "crypto/s2n_fips.h"
#include "s2n_test.h"
#include "utils/s2n_fork_detection.h"
#define MAX_NUMBER_OF_TEST_THREADS 2
#define CLONE_TEST_NO 0
#define CLONE_TEST_YES 1
#define CLONE_TEST_DETERMINE_AT_RUNTIME 2
#define RANDOM_GENERATE_DATA_SIZE 100
#define MAX_RANDOM_GENERATE_DATA_SIZE 5120
#define NUMBER_OF_BOUNDS 10
#define NUMBER_OF_RANGE_FUNCTION_CALLS 200
#define MAX_REPEATED_OUTPUT 4
S2N_RESULT s2n_rand_device_validate(struct s2n_rand_device *device);
S2N_RESULT s2n_rand_get_urandom_for_test(struct s2n_rand_device **device);
S2N_RESULT s2n_rand_set_urandom_for_test();
struct random_test_case {
const char *test_case_label;
int (*test_case_cb)(struct random_test_case *test_case);
int test_case_must_pass_clone_test;
int expected_return_status;
};
struct random_communication {
S2N_RESULT (*s2n_get_random_data_cb_1)(struct s2n_blob *blob);
S2N_RESULT (*s2n_get_random_data_cb_2)(struct s2n_blob *blob);
uint8_t thread_data[RANDOM_GENERATE_DATA_SIZE];
int *pipes;
};
static void s2n_verify_child_exit_status(pid_t proc_pid, int expected_status)
{
int status = 0;
#if defined(S2N_CLONE_SUPPORTED)
EXPECT_EQUAL(waitpid(proc_pid, &status, __WALL), proc_pid);
#else
/* __WALL is not relevant when clone() is not supported
* https://man7.org/linux/man-pages/man2/wait.2.html#NOTES
*/
EXPECT_EQUAL(waitpid(proc_pid, &status, 0), proc_pid);
#endif
/* Check that child exited with status = expected_status. If not, this
* indicates that an error was encountered in the unit tests executed in
* that child process.
*/
EXPECT_NOT_EQUAL(WIFEXITED(status), 0);
EXPECT_EQUAL(WEXITSTATUS(status), expected_status);
}
static int s2n_init_cb(void)
{
return S2N_SUCCESS;
}
static int s2n_cleanup_cb(void)
{
return S2N_SUCCESS;
}
static int s2n_entropy_cb(void *ptr, uint32_t size)
{
return S2N_SUCCESS;
}
/* Generates random data (every size between 1 and 5120 bytes) and performs
* basic pattern tests on the resulting output
*/
static S2N_RESULT s2n_basic_pattern_tests(S2N_RESULT (*s2n_get_random_data_cb)(struct s2n_blob *blob))
{
uint8_t bits[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
uint8_t bit_set_run[8];
uint8_t data[MAX_RANDOM_GENERATE_DATA_SIZE];
struct s2n_blob blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob, data, 0));
int trailing_zeros[8] = { 0 };
for (int size = 0; size < MAX_RANDOM_GENERATE_DATA_SIZE; size++) {
blob.size = size;
EXPECT_OK(s2n_get_random_data_cb(&blob));
if (size >= 64) {
/* Set the run counts to 0 */
memset(bit_set_run, 0, 8);
/* Apply 8 monobit tests to the data. Basically, we're
* looking for successive runs where a given bit is set.
* If a run exists with any particular bit 64 times in
* a row, then the data doesn't look randomly generated.
*/
for (int j = 0; j < size; j++) {
for (int k = 0; k < 8; k++) {
if (data[j] & bits[k]) {
bit_set_run[k]++;
if (j >= 64) {
RESULT_ENSURE_LT(bit_set_run[k], 64);
}
} else {
bit_set_run[k] = 0;
}
}
}
}
/* A common mistake in array filling leaves the last bytes zero
* depending on the length
*/
int remainder = size % 8;
int non_zero_found = 0;
for (int t = size - remainder; t < size; t++) {
non_zero_found |= data[t];
}
if (!non_zero_found) {
trailing_zeros[remainder]++;
}
}
for (int t = 1; t < 8; t++) {
RESULT_ENSURE_LT(trailing_zeros[t], 5120 / 16);
}
return S2N_RESULT_OK;
}
int qsort_comparator(const void *pval1, const void *pval2)
{
const uint64_t val1 = *(const uint64_t *) pval1;
const uint64_t val2 = *(const uint64_t *) pval2;
if (val1 < val2) {
return -1;
} else if (val1 > val2) {
return 1;
} else {
return 0;
}
}
static S2N_RESULT s2n_tests_get_range(void)
{
uint64_t range_results[NUMBER_OF_RANGE_FUNCTION_CALLS] = { 0 };
uint64_t current_output = 0;
/* The type of the `bound` parameter in s2n_public_random() is signed */
int64_t chosen_upper_bound = 0;
struct s2n_blob upper_bound_blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&upper_bound_blob, (void *) &chosen_upper_bound, sizeof(chosen_upper_bound)));
/* 0 is not a legal upper bound */
chosen_upper_bound = 0;
EXPECT_ERROR_WITH_ERRNO(s2n_public_random(chosen_upper_bound, ¤t_output), S2N_ERR_SAFETY);
/* For an upper bound of 1, 0 should be the only possible output */
chosen_upper_bound = 1;
EXPECT_OK(s2n_public_random(chosen_upper_bound, ¤t_output));
EXPECT_EQUAL(current_output, 0);
/* For a upper bound of 2, 0 and 1 should be the only possible outputs */
chosen_upper_bound = 1;
EXPECT_OK(s2n_public_random(chosen_upper_bound, ¤t_output));
EXPECT_TRUE((current_output == 0) || (current_output == 1));
/* Test NUMBER_OF_BOUNDS upper bounds. For each resulting range, draw
* NUMBER_OF_RANGE_FUNCTION_CALLS numbers from s2n_public_random() and
* verify the output. Set 2^30 * NUMBER_OF_RANGE_FUNCTION_CALLS as the
* minimal value for the upper bound. The minimal upper bound value is
* chosen to make the likelihood of a false positive small - see below for
* probability calculations.
*/
int64_t minimal_upper_bound = (int64_t) 0x40000000 * (int64_t) NUMBER_OF_RANGE_FUNCTION_CALLS;
for (size_t bound_ctr = 0; bound_ctr < NUMBER_OF_BOUNDS; bound_ctr++) {
/* chosen_upper_bound is supposedly chosen uniformly at random and
* minimal_upper_bound is only 2^30 * NUMBER_OF_RANGE_FUNCTION_CALLS, so
* this should not iterate for too long
*/
do {
EXPECT_OK(s2n_get_private_random_data(&upper_bound_blob));
} while (chosen_upper_bound < minimal_upper_bound);
/* Pick NUMBER_OF_RANGE_FUNCTION_CALLS numbers in the given interval.
* While doing that, also verify that the upper bound is respected.
*/
for (size_t func_call_ctr = 0; func_call_ctr < NUMBER_OF_RANGE_FUNCTION_CALLS; func_call_ctr++) {
EXPECT_OK(s2n_public_random(chosen_upper_bound, &range_results[func_call_ctr]));
EXPECT_TRUE(range_results[func_call_ctr] < chosen_upper_bound);
}
/* The probability of "at least MAX_REPEATED_OUTPUT repeated values"
* follows a binomial distribution. Hence, we can get an upper bound via
* Markov's inequality:
* P("at least MAX_REPEATED_OUTPUT repeated values")
* <= E("at least MAX_REPEATED_OUTPUT repeated values") / MAX_REPEATED_OUTPUT.
* = (NUMBER_OF_RANGE_FUNCTION_CALLS * 1/(2^30 * NUMBER_OF_RANGE_FUNCTION_CALLS)) / MAX_REPEATED_OUTPUT
* = 1/(2^30 * MAX_REPEATED_OUTPUT)
*
* With current parameters
* NUMBER_OF_BOUNDS = 10
* MAX_REPEATED_OUTPUT = 4
* this ends up with about a ~1/2^30 probability of failing this test
* with a false positive.
*
* qsort() complexity is not guaranteed, but
* NUMBER_OF_RANGE_FUNCTION_CALLS is very small, so no biggie.
* Sorting the array means that we can check for repeated numbers by
* just counting from left to right resetting the count when meeting a
* different value.
*/
qsort(range_results, NUMBER_OF_RANGE_FUNCTION_CALLS, sizeof(uint64_t),
qsort_comparator);
uint64_t current_value = range_results[0];
uint64_t next_value = 0;
size_t repeat_count = 1;
for (size_t ctr = 1; ctr < NUMBER_OF_RANGE_FUNCTION_CALLS - 1; ctr++) {
next_value = range_results[ctr];
if (current_value == next_value) {
repeat_count = repeat_count + 1;
} else {
RESULT_ENSURE_LT(current_value, next_value);
current_value = next_value;
repeat_count = 1;
}
EXPECT_TRUE(repeat_count < MAX_REPEATED_OUTPUT);
}
/* Reset for next iteration */
RESULT_CHECKED_MEMSET(&range_results[0], 0, sizeof(range_results));
}
return S2N_RESULT_OK;
}
void *s2n_thread_test_cb(void *thread_comms)
{
struct random_communication *thread_comms_ptr = (struct random_communication *) thread_comms;
struct s2n_blob thread_blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&thread_blob, thread_comms_ptr->thread_data, RANDOM_GENERATE_DATA_SIZE));
EXPECT_NOT_NULL(thread_comms_ptr->s2n_get_random_data_cb_1);
EXPECT_OK(thread_comms_ptr->s2n_get_random_data_cb_1(&thread_blob));
EXPECT_OK(s2n_rand_cleanup_thread());
return NULL;
}
/* Creates two threads and generates random data in those two threads as well
* as the parent thread. Verifies that all three resulting data blobs are
* different.
*/
static S2N_RESULT s2n_thread_test(
S2N_RESULT (*s2n_get_random_data_cb)(struct s2n_blob *blob),
S2N_RESULT (*s2n_get_random_data_cb_thread)(struct s2n_blob *blob))
{
uint8_t data[RANDOM_GENERATE_DATA_SIZE];
struct s2n_blob blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob, data, 0));
pthread_t threads[MAX_NUMBER_OF_TEST_THREADS];
struct random_communication thread_communication_0 = { .s2n_get_random_data_cb_1 = s2n_get_random_data_cb_thread };
struct random_communication thread_communication_1 = { .s2n_get_random_data_cb_1 = s2n_get_random_data_cb_thread };
/* Create two threads and have them each grab RANDOM_GENERATE_DATA_SIZE
* bytes.
*/
EXPECT_EQUAL(pthread_create(&threads[0], NULL, s2n_thread_test_cb, &thread_communication_0), 0);
EXPECT_EQUAL(pthread_create(&threads[1], NULL, s2n_thread_test_cb, &thread_communication_1), 0);
/* Wait for those threads to finish */
EXPECT_EQUAL(pthread_join(threads[0], NULL), 0);
EXPECT_EQUAL(pthread_join(threads[1], NULL), 0);
/* Confirm that their random data differs from each other */
EXPECT_BYTEARRAY_NOT_EQUAL(thread_communication_0.thread_data, thread_communication_1.thread_data, RANDOM_GENERATE_DATA_SIZE);
/* Confirm that their random data differs from the parent thread */
blob.size = RANDOM_GENERATE_DATA_SIZE;
EXPECT_OK(s2n_get_random_data_cb(&blob));
EXPECT_BYTEARRAY_NOT_EQUAL(thread_communication_0.thread_data, data, RANDOM_GENERATE_DATA_SIZE);
EXPECT_BYTEARRAY_NOT_EQUAL(thread_communication_1.thread_data, data, RANDOM_GENERATE_DATA_SIZE);
return S2N_RESULT_OK;
}
static void s2n_fork_test_generate_randomness(int write_fd, S2N_RESULT (*s2n_get_random_data_cb)(struct s2n_blob *blob))
{
uint8_t data[RANDOM_GENERATE_DATA_SIZE];
struct s2n_blob blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob, data, RANDOM_GENERATE_DATA_SIZE));
EXPECT_OK(s2n_get_random_data_cb(&blob));
/* Write the data we got to our pipe */
if (write(write_fd, data, RANDOM_GENERATE_DATA_SIZE) != RANDOM_GENERATE_DATA_SIZE) {
_exit(EXIT_FAILURE);
}
/* Close the pipe and exit */
close(write_fd);
exit(EXIT_SUCCESS);
}
static S2N_RESULT s2n_fork_test_verify_result(int *pipes, int proc_id, S2N_RESULT (*s2n_get_random_data_cb)(struct s2n_blob *blob))
{
uint8_t child_data[RANDOM_GENERATE_DATA_SIZE];
uint8_t parent_data[RANDOM_GENERATE_DATA_SIZE];
struct s2n_blob parent_blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&parent_blob, parent_data, RANDOM_GENERATE_DATA_SIZE));
/* Quickly verify we are in the parent process and not the child */
EXPECT_NOT_EQUAL(proc_id, 0);
/* This is the parent process, close the write end of the pipe */
EXPECT_SUCCESS(close(pipes[1]));
/* Read the child's data from the pipe */
EXPECT_EQUAL(read(pipes[0], child_data, RANDOM_GENERATE_DATA_SIZE), RANDOM_GENERATE_DATA_SIZE);
/* Get RANDOM_GENERATE_DATA_SIZE bytes in this parent process */
EXPECT_OK(s2n_get_random_data_cb(&parent_blob));
/* Confirm that their data differs from each other */
EXPECT_BYTEARRAY_NOT_EQUAL(child_data, parent_data, RANDOM_GENERATE_DATA_SIZE);
EXPECT_SUCCESS(close(pipes[0]));
/* Also remember to verify that the child exited okay */
s2n_verify_child_exit_status(proc_id, S2N_SUCCESS);
return S2N_RESULT_OK;
}
/* This function lists a number of stanzas performing various random data
* generation tests. Each stanza goes through a different combination of forking
* a process and threading. Each stanza must end with
* s2n_fork_test_verify_result() to verify the result and the exit code of the
* child process.
*/
static S2N_RESULT s2n_fork_test(
S2N_RESULT (*s2n_get_random_data_cb)(struct s2n_blob *blob),
S2N_RESULT (*s2n_get_random_data_cb_thread)(struct s2n_blob *blob))
{
pid_t proc_id;
int pipes[2];
/* A simple fork test. Generates random data in the parent and child, and
* verifies that the two resulting data blobs are different.
*/
EXPECT_SUCCESS(pipe(pipes));
proc_id = fork();
if (proc_id == 0) {
/* This is the child process, close the read end of the pipe */
EXPECT_SUCCESS(close(pipes[0]));
s2n_fork_test_generate_randomness(pipes[1], s2n_get_random_data_cb);
}
EXPECT_OK(s2n_fork_test_verify_result(pipes, proc_id, s2n_get_random_data_cb));
/* Creates a fork, but immediately creates threads in the child process. See
* https://github.com/aws/s2n-tls/issues/3107 why this might be an issue.
*/
EXPECT_SUCCESS(pipe(pipes));
proc_id = fork();
if (proc_id == 0) {
/* This is the child process, close the read end of the pipe */
EXPECT_SUCCESS(close(pipes[0]));
EXPECT_OK(s2n_thread_test(s2n_get_random_data_cb, s2n_get_random_data_cb_thread));
s2n_fork_test_generate_randomness(pipes[1], s2n_get_random_data_cb);
}
EXPECT_OK(s2n_fork_test_verify_result(pipes, proc_id, s2n_get_random_data_cb));
/* Creates threads and generates random data but only after generating
* random data in the child process */
EXPECT_SUCCESS(pipe(pipes));
proc_id = fork();
if (proc_id == 0) {
/* This is the child process, close the read end of the pipe */
EXPECT_SUCCESS(close(pipes[0]));
s2n_fork_test_generate_randomness(pipes[1], s2n_get_random_data_cb);
EXPECT_OK(s2n_thread_test(s2n_get_random_data_cb, s2n_get_random_data_cb_thread));
}
EXPECT_OK(s2n_fork_test_verify_result(pipes, proc_id, s2n_get_random_data_cb));
/* Creates threads in the parent process before generating random data */
EXPECT_SUCCESS(pipe(pipes));
proc_id = fork();
if (proc_id == 0) {
/* This is the child process, close the read end of the pipe */
EXPECT_SUCCESS(close(pipes[0]));
s2n_fork_test_generate_randomness(pipes[1], s2n_get_random_data_cb);
}
EXPECT_OK(s2n_thread_test(s2n_get_random_data_cb, s2n_get_random_data_cb_thread));
EXPECT_OK(s2n_fork_test_verify_result(pipes, proc_id, s2n_get_random_data_cb));
/* Basic tests in the child process */
EXPECT_SUCCESS(pipe(pipes));
proc_id = fork();
if (proc_id == 0) {
/* This is the child process, close the read end of the pipe */
EXPECT_SUCCESS(close(pipes[0]));
EXPECT_OK(s2n_basic_pattern_tests(s2n_get_random_data_cb));
s2n_fork_test_generate_randomness(pipes[1], s2n_get_random_data_cb);
}
EXPECT_OK(s2n_fork_test_verify_result(pipes, proc_id, s2n_get_random_data_cb));
return S2N_RESULT_OK;
}
static int s2n_clone_tests_child_process(void *ipc)
{
struct random_communication *ipc_ptr = (struct random_communication *) ipc;
/* This is the child process, close the read end of the pipe */
EXPECT_SUCCESS(close((int) ipc_ptr->pipes[0]));
EXPECT_NOT_NULL(ipc_ptr->s2n_get_random_data_cb_2);
s2n_fork_test_generate_randomness((int) ipc_ptr->pipes[1], ipc_ptr->s2n_get_random_data_cb_2);
/* s2n_fork_test_generate_randomness() will exit. But we need a return
* statement because we are in a non-void return type function. */
return EXIT_SUCCESS;
}
#define PROCESS_CHILD_STACK_SIZE (1024 * 1024) /* Suggested by clone() man page... */
static S2N_RESULT s2n_clone_tests(
S2N_RESULT (*s2n_get_random_data_cb)(struct s2n_blob *blob),
S2N_RESULT (*s2n_get_random_data_cb_clone)(struct s2n_blob *blob))
{
#if defined(S2N_CLONE_SUPPORTED)
int proc_id;
int pipes[2];
EXPECT_SUCCESS(pipe(pipes));
/* Use stack memory for this... We don't exit unit_test_clone() before this
* memory has served its purpose.
* Why? Using dynamically allocated memory causes Valgrind to squat on the
* allocated memory when the child process exists.
*/
char process_child_stack[PROCESS_CHILD_STACK_SIZE];
EXPECT_NOT_NULL(process_child_stack);
struct random_communication ipc = {
.s2n_get_random_data_cb_1 = s2n_get_random_data_cb,
.s2n_get_random_data_cb_2 = s2n_get_random_data_cb_clone,
.pipes = (int *) pipes
};
proc_id = clone(s2n_clone_tests_child_process, (void *) (process_child_stack + PROCESS_CHILD_STACK_SIZE), 0, (void *) &ipc);
EXPECT_NOT_EQUAL(proc_id, -1);
EXPECT_OK(s2n_fork_test_verify_result(pipes, proc_id, ipc.s2n_get_random_data_cb_1));
#endif
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_execute_clone_tests(void)
{
EXPECT_OK(s2n_clone_tests(s2n_get_public_random_data, s2n_get_public_random_data));
EXPECT_OK(s2n_clone_tests(s2n_get_private_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_clone_tests(s2n_get_public_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_clone_tests(s2n_get_private_random_data, s2n_get_public_random_data));
return S2N_RESULT_OK;
}
/* Very basic test generating random data a few times and checking that the
* output is different
*/
static S2N_RESULT s2n_basic_generate_tests(void)
{
uint8_t data1[RANDOM_GENERATE_DATA_SIZE];
uint8_t data2[RANDOM_GENERATE_DATA_SIZE];
struct s2n_blob blob1 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob1, data1, 0));
struct s2n_blob blob2 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob2, data2, 0));
/* Generate two random data blobs and confirm that they are unique */
blob1.size = RANDOM_GENERATE_DATA_SIZE;
blob2.size = RANDOM_GENERATE_DATA_SIZE;
EXPECT_OK(s2n_get_public_random_data(&blob1));
EXPECT_OK(s2n_get_public_random_data(&blob2));
EXPECT_BYTEARRAY_NOT_EQUAL(data1, data2, RANDOM_GENERATE_DATA_SIZE);
EXPECT_OK(s2n_get_private_random_data(&blob1));
EXPECT_BYTEARRAY_NOT_EQUAL(data1, data2, RANDOM_GENERATE_DATA_SIZE);
EXPECT_OK(s2n_get_private_random_data(&blob2));
EXPECT_BYTEARRAY_NOT_EQUAL(data1, data2, RANDOM_GENERATE_DATA_SIZE);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_random_implementation_test(void)
{
uint8_t random_data[RANDOM_GENERATE_DATA_SIZE] = { 0 };
struct s2n_blob blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob, random_data, sizeof(random_data)));
uint64_t previous_public_bytes_used = 0;
EXPECT_OK(s2n_get_public_random_bytes_used(&previous_public_bytes_used));
uint64_t previous_private_bytes_used = 0;
EXPECT_OK(s2n_get_private_random_bytes_used(&previous_private_bytes_used));
EXPECT_OK(s2n_get_public_random_data(&blob));
EXPECT_OK(s2n_get_private_random_data(&blob));
uint64_t public_bytes_used = 0;
EXPECT_OK(s2n_get_public_random_bytes_used(&public_bytes_used));
uint64_t private_bytes_used = 0;
EXPECT_OK(s2n_get_private_random_bytes_used(&private_bytes_used));
if (s2n_is_in_fips_mode()) {
/* The libcrypto random implementation should be used when operating in FIPS mode, so
* the bytes used in the custom DRBG state should not have changed.
*/
EXPECT_EQUAL(public_bytes_used, previous_public_bytes_used);
EXPECT_EQUAL(private_bytes_used, previous_public_bytes_used);
} else {
EXPECT_TRUE(public_bytes_used > previous_public_bytes_used);
EXPECT_TRUE(private_bytes_used > previous_private_bytes_used);
}
return S2N_RESULT_OK;
}
/* A collection of tests executed for each test dimension */
static int s2n_common_tests(struct random_test_case *test_case)
{
uint8_t data1[RANDOM_GENERATE_DATA_SIZE];
uint8_t data2[RANDOM_GENERATE_DATA_SIZE];
struct s2n_blob blob1 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob1, data1, 0));
struct s2n_blob blob2 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob2, data2, 0));
int64_t bound = 0;
uint64_t output = 0;
/* Get one byte of data, to make sure the pool is (almost) full */
blob1.size = 1;
blob2.size = 1;
EXPECT_OK(s2n_get_public_random_data(&blob1));
EXPECT_OK(s2n_get_private_random_data(&blob2));
/* Verify we generate unique data over threads */
EXPECT_OK(s2n_thread_test(s2n_get_public_random_data, s2n_get_public_random_data));
EXPECT_OK(s2n_thread_test(s2n_get_private_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_thread_test(s2n_get_public_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_thread_test(s2n_get_private_random_data, s2n_get_public_random_data));
/* Verify we generate unique data over forks */
EXPECT_OK(s2n_fork_test(s2n_get_private_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_fork_test(s2n_get_public_random_data, s2n_get_public_random_data));
EXPECT_OK(s2n_fork_test(s2n_get_public_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_fork_test(s2n_get_private_random_data, s2n_get_public_random_data));
/* Some fork detection mechanisms can also detect forks through clone().
* s2n_is_X_supported() only determines whether the system runtime
* environment supports fork detection method X. The function is not aware
* of the test case which is running. So, we need the CLONE_* tags to
* determine whether the clone test should run or not since some test cases
* disables the fork detection methods that can detect forks through clone()
*/
if (test_case->test_case_must_pass_clone_test == CLONE_TEST_YES) {
EXPECT_EQUAL(s2n_is_madv_wipeonfork_supported() || s2n_is_map_inherit_zero_supported(), true);
EXPECT_OK(s2n_execute_clone_tests());
} else if (test_case->test_case_must_pass_clone_test == CLONE_TEST_DETERMINE_AT_RUNTIME) {
if (s2n_is_madv_wipeonfork_supported() || s2n_is_map_inherit_zero_supported()) {
EXPECT_OK(s2n_execute_clone_tests());
}
}
/* Basic tests generating randomness */
EXPECT_OK(s2n_basic_generate_tests());
/* Test that the correct random implementation is used */
EXPECT_OK(s2n_random_implementation_test());
/* Verify that there are no trivially observable patterns in the output */
EXPECT_OK(s2n_basic_pattern_tests(s2n_get_public_random_data));
EXPECT_OK(s2n_basic_pattern_tests(s2n_get_private_random_data));
/* Special range function tests */
EXPECT_OK(s2n_tests_get_range());
/* Try to cleanup in the current thread and gather random data again for
* each of the public functions. We did not call s2n_rand_cleanup(), so this
* should still work properly.
*/
EXPECT_OK(s2n_rand_cleanup_thread());
blob1.size = RANDOM_GENERATE_DATA_SIZE;
EXPECT_OK(s2n_get_public_random_data(&blob1));
EXPECT_OK(s2n_basic_generate_tests());
EXPECT_OK(s2n_rand_cleanup_thread());
blob2.size = RANDOM_GENERATE_DATA_SIZE;
EXPECT_OK(s2n_get_private_random_data(&blob2));
EXPECT_OK(s2n_basic_generate_tests());
bound = RANDOM_GENERATE_DATA_SIZE;
EXPECT_OK(s2n_rand_cleanup_thread());
EXPECT_OK(s2n_public_random(bound, &output));
EXPECT_TRUE(output < bound);
/* Just a sanity check */
EXPECT_BYTEARRAY_NOT_EQUAL(data1, data2, RANDOM_GENERATE_DATA_SIZE);
/* Verify that fork detection also works if we fork before initializing
* the drbgs
*/
EXPECT_OK(s2n_rand_cleanup_thread());
EXPECT_OK(s2n_fork_test(s2n_get_private_random_data, s2n_get_private_random_data));
EXPECT_OK(s2n_rand_cleanup_thread());
EXPECT_OK(s2n_fork_test(s2n_get_public_random_data, s2n_get_public_random_data));
/* Verify that threading before initializing doesn't cause any issues */
EXPECT_OK(s2n_rand_cleanup_thread());
EXPECT_OK(s2n_thread_test(s2n_get_public_random_data, s2n_get_public_random_data));
EXPECT_OK(s2n_rand_cleanup_thread());
EXPECT_OK(s2n_thread_test(s2n_get_private_random_data, s2n_get_private_random_data));
return S2N_SUCCESS;
}
static int s2n_random_test_case_default_cb(struct random_test_case *test_case)
{
EXPECT_SUCCESS(s2n_init());
/* Verify that randomness callbacks can't be set to NULL */
EXPECT_FAILURE(s2n_rand_set_callbacks(NULL, s2n_cleanup_cb, s2n_entropy_cb, s2n_entropy_cb));
EXPECT_FAILURE(s2n_rand_set_callbacks(s2n_init_cb, NULL, s2n_entropy_cb, s2n_entropy_cb));
EXPECT_FAILURE(s2n_rand_set_callbacks(s2n_init_cb, s2n_cleanup_cb, NULL, s2n_entropy_cb));
EXPECT_FAILURE(s2n_rand_set_callbacks(s2n_init_cb, s2n_cleanup_cb, s2n_entropy_cb, NULL));
EXPECT_EQUAL(s2n_common_tests(test_case), S2N_SUCCESS);
EXPECT_SUCCESS(s2n_cleanup());
return EXIT_SUCCESS;
}
/* Test case that turns off prediction resistance */
static int s2n_random_test_case_without_pr_cb(struct random_test_case *test_case)
{
EXPECT_SUCCESS(s2n_init());
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(true));
EXPECT_EQUAL(s2n_common_tests(test_case), S2N_SUCCESS);
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(false));
EXPECT_SUCCESS(s2n_cleanup());
return EXIT_SUCCESS;
}
/* Test case that turns off prediction resistance and all fork detection
* mechanisms except pthread_at_fork()
*/
static int s2n_random_test_case_without_pr_pthread_atfork_cb(struct random_test_case *test_case)
{
if (s2n_is_pthread_atfork_supported() == false) {
TEST_DEBUG_PRINT("s2n_random_test.c test case not supported. Skipping.\nTest case: %s\n", test_case->test_case_label);
return S2N_SUCCESS;
}
POSIX_GUARD_RESULT(s2n_ignore_wipeonfork_and_inherit_zero_for_testing());
EXPECT_SUCCESS(s2n_init());
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(true));
EXPECT_EQUAL(s2n_common_tests(test_case), S2N_SUCCESS);
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(false));
EXPECT_SUCCESS(s2n_cleanup());
return EXIT_SUCCESS;
}
static int s2n_random_test_case_without_pr_madv_wipeonfork_cb(struct random_test_case *test_case)
{
if (s2n_is_madv_wipeonfork_supported() == false) {
TEST_DEBUG_PRINT("s2n_random_test.c test case not supported. Skipping.\nTest case: %s\n", test_case->test_case_label);
return S2N_SUCCESS;
}
POSIX_GUARD_RESULT(s2n_ignore_pthread_atfork_for_testing());
EXPECT_SUCCESS(s2n_init());
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(true));
EXPECT_EQUAL(s2n_common_tests(test_case), S2N_SUCCESS);
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(false));
EXPECT_SUCCESS(s2n_cleanup());
return S2N_SUCCESS;
}
static int s2n_random_test_case_without_pr_map_inherit_zero_cb(struct random_test_case *test_case)
{
if (s2n_is_map_inherit_zero_supported() == false) {
TEST_DEBUG_PRINT("s2n_random_test.c test case not supported. Skipping.\nTest case: %s\n", test_case->test_case_label);
return S2N_SUCCESS;
}
POSIX_GUARD_RESULT(s2n_ignore_pthread_atfork_for_testing());
EXPECT_SUCCESS(s2n_init());
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(true));
EXPECT_EQUAL(s2n_common_tests(test_case), S2N_SUCCESS);
POSIX_GUARD_RESULT(s2n_ignore_prediction_resistance_for_testing(false));
EXPECT_SUCCESS(s2n_cleanup());
return S2N_SUCCESS;
}
static int s2n_random_test_case_failure_cb(struct random_test_case *test_case)
{
EXPECT_SUCCESS(s2n_init());
/* This is a cheap way to ensure that failures in a fork bubble up to the
* parent as a failure. This should be caught in the parent when querying
* the return status code of the child. All s2n test macros will cause a
* process to exit with error status = 1. We call exit() directly to avoid
* messages being printed on stderr, in turn, appearing in logs.
*/
exit(1);
EXPECT_SUCCESS(s2n_cleanup());
return EXIT_SUCCESS;
}
static int s2n_random_noop_destructor_test_cb(struct random_test_case *test_case)
{
/* Ensure that the destructor / cleanup does not require s2n_init to have been called.
* If applications load s2n-tls but do not actually use it, our cleanup should not fail.
*
* Other test cases may currently trigger this scenario if the feature they
* intend to test is not available so they exit before calling s2n_init.
*/
return EXIT_SUCCESS;
}
static int s2n_random_rand_bytes_after_cleanup_cb(struct random_test_case *test_case)
{
s2n_disable_atexit();
EXPECT_SUCCESS(s2n_init());
EXPECT_SUCCESS(s2n_cleanup());
unsigned char rndbytes[16];
EXPECT_EQUAL(RAND_bytes(rndbytes, sizeof(rndbytes)), 1);
return S2N_SUCCESS;
}
static int s2n_random_invalid_urandom_fd_cb(struct random_test_case *test_case)
{
EXPECT_SUCCESS(s2n_disable_atexit());
struct s2n_rand_device *dev_urandom = NULL;
EXPECT_OK(s2n_rand_get_urandom_for_test(&dev_urandom));
EXPECT_NOT_NULL(dev_urandom);
for (size_t test = 0; test <= 1; test++) {
EXPECT_EQUAL(dev_urandom->fd, -1);
/* Validation should fail before initialization. */
EXPECT_ERROR(s2n_rand_device_validate(dev_urandom));
EXPECT_SUCCESS(s2n_init());
/* Validation should succeed after initialization. */
EXPECT_OK(s2n_rand_device_validate(dev_urandom));
/* Override the mix callback with urandom, in case support for rdrand is detected and enabled. */
EXPECT_OK(s2n_rand_set_urandom_for_test());
EXPECT_TRUE(dev_urandom->fd > STDERR_FILENO);
if (test == 0) {
/* Close the file descriptor. */
EXPECT_EQUAL(close(dev_urandom->fd), 0);
} else {
/* Make the file descriptor invalid by pointing it to STDERR. */
dev_urandom->fd = STDERR_FILENO;
}
/* Validation should fail when the file descriptor is invalid. */
EXPECT_ERROR(s2n_rand_device_validate(dev_urandom));
s2n_stack_blob(rand_data, 16, 16);
EXPECT_OK(s2n_get_public_random_data(&rand_data));
uint64_t public_bytes_used = 0;
EXPECT_OK(s2n_get_public_random_bytes_used(&public_bytes_used));
if (s2n_is_in_fips_mode()) {
/* The urandom implementation should not be in use when s2n-tls is in FIPS mode. */
EXPECT_EQUAL(public_bytes_used, 0);
} else {
/* When the urandom implementation is used, the file descriptor is re-opened and
* validation should succeed.
*/
EXPECT_OK(s2n_rand_device_validate(dev_urandom));
EXPECT_TRUE(public_bytes_used > 0);
}
EXPECT_SUCCESS(s2n_cleanup());
}
return S2N_SUCCESS;
}
struct random_test_case random_test_cases[] = {
{ "Random API.", s2n_random_test_case_default_cb, CLONE_TEST_DETERMINE_AT_RUNTIME, EXIT_SUCCESS },
{ "Random API without prediction resistance.", s2n_random_test_case_without_pr_cb, CLONE_TEST_DETERMINE_AT_RUNTIME, EXIT_SUCCESS },
{ "Random API without prediction resistance and with only pthread_atfork fork detection mechanism.", s2n_random_test_case_without_pr_pthread_atfork_cb, CLONE_TEST_NO, EXIT_SUCCESS },
{ "Random API without prediction resistance and with only madv_wipeonfork fork detection mechanism.", s2n_random_test_case_without_pr_madv_wipeonfork_cb, CLONE_TEST_YES, EXIT_SUCCESS },
{ "Random API without prediction resistance and with only map_inheret_zero fork detection mechanism.", s2n_random_test_case_without_pr_map_inherit_zero_cb, CLONE_TEST_YES, EXIT_SUCCESS },
{ "Test destructor without s2n_init", s2n_random_noop_destructor_test_cb, CLONE_TEST_DETERMINE_AT_RUNTIME, EXIT_SUCCESS },
/* The s2n FAIL_MSG() macro uses exit(1) not exit(EXIT_FAILURE). So, we need
* to use 1 below and in s2n_random_test_case_failure_cb().
*/
{ "Test failure.", s2n_random_test_case_failure_cb, CLONE_TEST_DETERMINE_AT_RUNTIME, 1 },
{ "Test libcrypto's RAND engine is reset correctly after manual s2n_cleanup()", s2n_random_rand_bytes_after_cleanup_cb, CLONE_TEST_DETERMINE_AT_RUNTIME, EXIT_SUCCESS },
{ "Test getting entropy with an invalid file descriptor", s2n_random_invalid_urandom_fd_cb, CLONE_TEST_DETERMINE_AT_RUNTIME, EXIT_SUCCESS },
};
int main(int argc, char **argv)
{
BEGIN_TEST_NO_INIT();
/* For each test case, creates a child process that runs the test case.
*
* Fork detection is lazily initialised on first invocation of
* s2n_get_fork_generation_number(). Hence, it is important that children
* are created before calling into the fork detection code.
*/
for (size_t i = 0; i < s2n_array_len(random_test_cases); i++) {
pid_t proc_id = 0;
proc_id = fork();
EXPECT_TRUE(proc_id >= 0);
if (proc_id == 0) {
/* In child */
EXPECT_EQUAL(random_test_cases[i].test_case_cb(&random_test_cases[i]), EXIT_SUCCESS);
/* Exit code EXIT_SUCCESS means that tests in this process finished
* successfully. Any errors would have exited the process with an
* exit code != EXIT_SUCCESS. We verify this in the parent process.
* Also prevents child from creating more children.
*/
exit(EXIT_SUCCESS);
} else {
s2n_verify_child_exit_status(proc_id, random_test_cases[i].expected_return_status);
}
}
/* We are very paranoid when it comes to randomness. So, run the basic test
* set without using the fork infrastructure above.
*/
EXPECT_EQUAL(random_test_cases[0].test_case_cb(&random_test_cases[0]), EXIT_SUCCESS);
END_TEST_NO_INIT();
}
|