File: s2n_safety_test.c

package info (click to toggle)
aws-crt-python 0.20.4%2Bdfsg-1~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 72,656 kB
  • sloc: ansic: 381,805; python: 23,008; makefile: 6,251; sh: 4,536; cpp: 699; ruby: 208; java: 77; perl: 73; javascript: 46; xml: 11
file content (443 lines) | stat: -rw-r--r-- 13,664 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#include "utils/s2n_safety.h"

#include "s2n_test.h"

#define CHECK_OVF_0(fn, type, a, b)                \
    do {                                           \
        type result_val;                           \
        EXPECT_FAILURE(fn((a), (b), &result_val)); \
    } while (0)

#define CHECK_OVF(fn, type, a, b)    \
    do {                             \
        CHECK_OVF_0(fn, type, a, b); \
        CHECK_OVF_0(fn, type, b, a); \
    } while (0)

#define CHECK_NO_OVF_0(fn, type, a, b, r)          \
    do {                                           \
        type result_val;                           \
        EXPECT_SUCCESS(fn((a), (b), &result_val)); \
        EXPECT_EQUAL(result_val, (r));             \
    } while (0)

#define CHECK_NO_OVF(fn, type, a, b, r)    \
    do {                                   \
        CHECK_NO_OVF_0(fn, type, a, b, r); \
        CHECK_NO_OVF_0(fn, type, b, a, r); \
    } while (0)

static int failure_gte()
{
    POSIX_ENSURE_GTE(0, 1);

    return 0;
}

static int success_gte()
{
    POSIX_ENSURE_GTE(0, 0);
    POSIX_ENSURE_GTE(1, 0);

    return 0;
}

static int failure_gt()
{
    POSIX_ENSURE_GT(0, 0);
    POSIX_ENSURE_GT(0, 1);

    return 0;
}

static int success_gt()
{
    POSIX_ENSURE_GT(1, 0);

    return 0;
}

static int failure_lte()
{
    POSIX_ENSURE_LTE(1, 0);

    return 0;
}

static int success_lte()
{
    POSIX_ENSURE_LTE(1, 1);
    POSIX_ENSURE_LTE(0, 1);

    return 0;
}

static int failure_lt()
{
    POSIX_ENSURE_LT(1, 0);
    POSIX_ENSURE_LT(1, 1);

    return 0;
}

static int success_lt()
{
    POSIX_ENSURE_LT(0, 1);

    return 0;
}

static int success_notnull()
{
    POSIX_ENSURE_REF(&"");

    return 0;
}

static int failure_notnull()
{
    POSIX_ENSURE_REF(NULL);

    return 0;
}

static int success_memcpy()
{
    char dst[1024];
    char src[1024] = { 0 };

    POSIX_CHECKED_MEMCPY(dst, src, 1024);

    return 0;
}

static int failure_memcpy()
{
    char src[1024];
    char *ptr = NULL;

    POSIX_CHECKED_MEMCPY(ptr, src, 1024);

    return 0;
}

static int success_inclusive_range()
{
    POSIX_ENSURE_INCLUSIVE_RANGE(0, 0, 2);
    POSIX_ENSURE_INCLUSIVE_RANGE(0, 1, 2);
    POSIX_ENSURE_INCLUSIVE_RANGE(0, 2, 2);

    return 0;
}

static int failure_inclusive_range_too_high()
{
    POSIX_ENSURE_INCLUSIVE_RANGE(0, 3, 2);

    return 0;
}

static int failure_inclusive_range_too_low()
{
    POSIX_ENSURE_INCLUSIVE_RANGE(0, -1, 2);

    return 0;
}

static int success_exclusive_range()
{
    POSIX_ENSURE_EXCLUSIVE_RANGE(0, 1, 2);

    return 0;
}

static int failure_exclusive_range_too_high()
{
    POSIX_ENSURE_EXCLUSIVE_RANGE(0, 3, 2);

    return 0;
}

static int failure_exclusive_range_too_low()
{
    POSIX_ENSURE_EXCLUSIVE_RANGE(0, -1, 2);

    return 0;
}

static int failure_exclusive_range_eq_high()
{
    POSIX_ENSURE_EXCLUSIVE_RANGE(0, 2, 2);

    return 0;
}

static int failure_exclusive_range_eq_low()
{
    POSIX_ENSURE_EXCLUSIVE_RANGE(0, 0, 2);

    return 0;
}

static int success_ct_pkcs1()
{
    uint8_t pkcs1_data[] = { 0x00, 0x02, 0x80, 0x08, 0x0c, 0x00, 0xab, 0xcd, 0xef, 0x00 };
    uint8_t outbuf[] = { 0x11, 0x22, 0x33, 0x44 };
    uint8_t expected[] = { 0xab, 0xcd, 0xef, 0x00 };

    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data, sizeof(pkcs1_data), sizeof(outbuf));

    return memcmp(outbuf, expected, sizeof(expected)) ? -1 : 0;
}

static int success_ct_pkcs1_negative()
{
    uint8_t pkcs1_data_too_long[] = { 0x00, 0x02, 0x80, 0x0f, 0x00, 0x10, 0xab, 0xcd, 0xef, 0x00 };
    uint8_t outbuf[] = { 0x11, 0x22, 0x33, 0x44 };
    uint8_t expected[] = { 0x11, 0x22, 0x33, 0x44 };

    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data_too_long, sizeof(pkcs1_data_too_long), sizeof(outbuf));
    if (memcmp(outbuf, expected, sizeof(expected))) {
        return -1;
    }

    uint8_t pkcs1_data_too_short[] = { 0x00, 0x02, 0x80, 0x01, 0x02, 0x07, 0x00, 0xcd, 0xef, 0x00 };

    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data_too_short, sizeof(pkcs1_data_too_short), sizeof(outbuf));
    if (memcmp(outbuf, expected, sizeof(expected))) {
        return -1;
    }

    uint8_t pkcs1_data_zeroes_in_pad[] = { 0x00, 0x02, 0x80, 0x00, 0x0c, 0x00, 0xab, 0xcd, 0xef, 0x00 };
    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data_zeroes_in_pad, sizeof(pkcs1_data_zeroes_in_pad), sizeof(outbuf));
    if (memcmp(outbuf, expected, sizeof(expected))) {
        return -1;
    }

    uint8_t pkcs1_data_zeroes_in_pad2[] = { 0x00, 0x02, 0x80, 0x11, 0x00, 0x00, 0xab, 0xcd, 0xef, 0x00 };
    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data_zeroes_in_pad2, sizeof(pkcs1_data_zeroes_in_pad2), sizeof(outbuf));
    if (memcmp(outbuf, expected, sizeof(expected))) {
        return -1;
    }

    uint8_t pkcs1_data_bad_prefix1[] = { 0x01, 0x02, 0x80, 0x08, 0x0c, 0x00, 0xab, 0xcd, 0xef, 0x00 };
    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data_bad_prefix1, sizeof(pkcs1_data_bad_prefix1), sizeof(outbuf));
    if (memcmp(outbuf, expected, sizeof(expected))) {
        return -1;
    }

    uint8_t pkcs1_data_bad_prefix2[] = { 0x00, 0x12, 0x80, 0x08, 0x0c, 0x00, 0xab, 0xcd, 0xef, 0x00 };
    s2n_constant_time_pkcs1_unpad_or_dont(outbuf, pkcs1_data_bad_prefix2, sizeof(pkcs1_data_bad_prefix2), sizeof(outbuf));
    if (memcmp(outbuf, expected, sizeof(expected))) {
        return -1;
    }

    return 0;
}

int main(int argc, char **argv)
{
    BEGIN_TEST();
    EXPECT_SUCCESS(s2n_disable_tls13_in_test());

    EXPECT_FAILURE(failure_gte());
    EXPECT_FAILURE(failure_lte());
    EXPECT_FAILURE(failure_gt());
    EXPECT_FAILURE(failure_lt());
    EXPECT_FAILURE(failure_notnull());
    EXPECT_FAILURE(failure_memcpy());
    EXPECT_FAILURE(failure_inclusive_range_too_high());
    EXPECT_FAILURE(failure_inclusive_range_too_low());
    EXPECT_FAILURE(failure_exclusive_range_too_high());
    EXPECT_FAILURE(failure_exclusive_range_too_low());
    EXPECT_FAILURE(failure_exclusive_range_eq_high());
    EXPECT_FAILURE(failure_exclusive_range_eq_low());

    EXPECT_SUCCESS(success_gte());
    EXPECT_SUCCESS(success_lte());
    EXPECT_SUCCESS(success_gt());
    EXPECT_SUCCESS(success_lt());
    EXPECT_SUCCESS(success_notnull());
    EXPECT_SUCCESS(success_memcpy());
    EXPECT_SUCCESS(success_inclusive_range());
    EXPECT_SUCCESS(success_exclusive_range());
    EXPECT_SUCCESS(success_ct_pkcs1());
    EXPECT_SUCCESS(success_ct_pkcs1_negative());

    uint8_t a[4] = { 1, 2, 3, 4 };
    uint8_t b[4] = { 1, 2, 3, 4 };
    uint8_t c[4] = { 5, 6, 7, 8 };
    uint8_t d[4] = { 5, 6, 7, 8 };
    uint8_t e[4] = { 1, 2, 3, 4 };
    uint8_t f[4] = { 1, 2, 3, 5 };

    EXPECT_TRUE(s2n_constant_time_equals(a, b, sizeof(a)));
    EXPECT_FALSE(s2n_constant_time_equals(a, c, sizeof(a)));
    EXPECT_FALSE(s2n_constant_time_equals(a, NULL, sizeof(a)));
    EXPECT_FALSE(s2n_constant_time_equals(NULL, b, sizeof(b)));
    EXPECT_TRUE(s2n_constant_time_equals(NULL, NULL, 0));
    EXPECT_FALSE(s2n_constant_time_equals(NULL, NULL, sizeof(a)));
    EXPECT_TRUE(s2n_constant_time_equals(a, c, 0));
    /* ensure the function checks all of the bytes */
    EXPECT_TRUE(s2n_constant_time_equals(a, f, 3));
    EXPECT_FALSE(s2n_constant_time_equals(a, f, 4));

    EXPECT_SUCCESS(s2n_constant_time_copy_or_dont(a, c, sizeof(a), 0));
    EXPECT_EQUAL(s2n_constant_time_equals(a, c, sizeof(a)), 1);

    for (int i = 1; i < 256; i++) {
        EXPECT_SUCCESS(s2n_constant_time_copy_or_dont(b, d, sizeof(a), i));
        EXPECT_EQUAL(s2n_constant_time_equals(b, d, sizeof(a)), 0);
        EXPECT_EQUAL(s2n_constant_time_equals(b, e, sizeof(a)), 1);
    }

    uint8_t x[1];
    uint8_t y[1];

    for (int i = 0; i < 256; i++) {
        for (int j = 0; j < 256; j++) {
            x[0] = i;
            y[0] = j;

            int expected = 0;

            if (i == j) {
                expected = 1;
            }

            EXPECT_EQUAL(s2n_constant_time_equals(x, y, sizeof(x)), expected);
        }
    }

    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0, 0, 0);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0, 1, 0);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0, ~0u, 0);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 4, 5, 20);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 1234, 4321, 5332114);

    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0xFFFFFFFF, 1, 0xFFFFFFFF);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0xFFFF, 1, 0xFFFF);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0xFFFF, 0xFFFF, 0xfffe0001u);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0x10000, 0xFFFF, 0xFFFF0000u);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0x10001, 0xFFFF, 0xFFFFFFFFu);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0x10001, 0xFFFE, 0xFFFEFFFEu);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0x10002, 0xFFFE, 0xFFFFFFFCu);
    CHECK_OVF(s2n_mul_overflow, uint32_t, 0x10003, 0xFFFE);
    CHECK_NO_OVF(s2n_mul_overflow, uint32_t, 0xFFFE, 0xFFFE, 0xFFFC0004u);
    CHECK_OVF(s2n_mul_overflow, uint32_t, 0x1FFFF, 0x1FFFF);
    CHECK_OVF(s2n_mul_overflow, uint32_t, ~0u, ~0u);

    uint32_t result = 1;
    EXPECT_SUCCESS(s2n_align_to(0, 10, &result));
    EXPECT_EQUAL(result, 0);

    EXPECT_FAILURE(s2n_align_to(1, 0, &result));

    EXPECT_SUCCESS(s2n_align_to(10, 16, &result));
    EXPECT_EQUAL(result, 16);

    EXPECT_SUCCESS(s2n_align_to(20, 16, &result));
    EXPECT_EQUAL(result, 32);

    EXPECT_FAILURE(s2n_align_to(UINT32_MAX, 4, &result));

    EXPECT_SUCCESS(s2n_align_to(10, 4096, &result));
    EXPECT_EQUAL(result, 4096);

    EXPECT_SUCCESS(s2n_align_to(4097, 4096, &result));
    EXPECT_EQUAL(result, 8192);

    EXPECT_SUCCESS(s2n_align_to(4096, 4096, &result));
    EXPECT_EQUAL(result, 4096);

    EXPECT_FAILURE(s2n_align_to(UINT32_MAX - 4000, 4096, &result));
    EXPECT_FAILURE(s2n_align_to(UINT32_MAX, 4096, &result));
    const uint32_t HALF_MAX = UINT32_MAX / 2;
    const uint32_t ACTUAL_MAX = UINT32_MAX;

    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 0, 0, 0);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 0, 1, 1);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 4, 5, 9);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 1234, 4321, 5555);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 0, ACTUAL_MAX, ACTUAL_MAX);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, HALF_MAX, HALF_MAX, ACTUAL_MAX - 1);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, HALF_MAX + 1, HALF_MAX, ACTUAL_MAX);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 100, ACTUAL_MAX - 102, ACTUAL_MAX - 2);
    CHECK_NO_OVF(s2n_add_overflow, uint32_t, 100, ACTUAL_MAX - 100, ACTUAL_MAX);
    CHECK_OVF(s2n_add_overflow, uint32_t, 1, ACTUAL_MAX);
    CHECK_OVF(s2n_add_overflow, uint32_t, 100, ACTUAL_MAX);
    CHECK_OVF(s2n_add_overflow, uint32_t, HALF_MAX, ACTUAL_MAX);
    CHECK_OVF(s2n_add_overflow, uint32_t, ACTUAL_MAX, ACTUAL_MAX);
    CHECK_OVF(s2n_add_overflow, uint32_t, HALF_MAX + 1, HALF_MAX + 1);
    CHECK_OVF(s2n_add_overflow, uint32_t, 100, ACTUAL_MAX - 99);
    CHECK_OVF(s2n_add_overflow, uint32_t, 100, ACTUAL_MAX - 1);

    /* Test: S2N_ADD_IS_OVERFLOW_SAFE */
    {
        const size_t num = 100;

        uint64_t success_test_values[][3] = {
            { 0, 0, 0 },
            { 1, 0, 1 },
            { 0, 0, UINT8_MAX },
            { 1, 1, UINT8_MAX },
            { UINT8_MAX, 0, UINT8_MAX },
            { UINT8_MAX - num, num, UINT8_MAX },
            { UINT8_MAX / 2, UINT8_MAX / 2, UINT8_MAX },
            { 1, 1, UINT64_MAX },
            { UINT64_MAX, 0, UINT64_MAX },
            { UINT64_MAX - num, num, UINT64_MAX },
            { UINT64_MAX / 2, UINT64_MAX / 2, UINT64_MAX },
        };
        for (size_t i = 0; i < s2n_array_len(success_test_values); i++) {
            uint64_t v1 = success_test_values[i][0];
            uint64_t v2 = success_test_values[i][1];
            uint64_t max = success_test_values[i][2];
            EXPECT_TRUE(S2N_ADD_IS_OVERFLOW_SAFE(v1, v2, max));
            EXPECT_TRUE(S2N_ADD_IS_OVERFLOW_SAFE(v2, v1, max));
        }

        uint64_t failure_test_values[][3] = {
            { 1, 0, 0 },
            { UINT8_MAX, 0, 0 },
            { UINT64_MAX, 0, UINT8_MAX },
            { UINT64_MAX, UINT64_MAX, UINT8_MAX },
            { UINT8_MAX, 1, UINT8_MAX },
            { UINT8_MAX - 1, UINT8_MAX - 1, UINT8_MAX },
            { UINT16_MAX, 1, UINT16_MAX },
            { UINT64_MAX, 1, UINT64_MAX },
            { UINT8_MAX, num, UINT8_MAX },
            { UINT16_MAX, num, UINT16_MAX },
            { UINT64_MAX, num, UINT64_MAX },
            { UINT8_MAX, UINT8_MAX, UINT8_MAX },
            { UINT16_MAX, UINT16_MAX, UINT16_MAX },
            { UINT64_MAX, UINT64_MAX, UINT64_MAX },
            { UINT64_MAX - num, UINT64_MAX - num, UINT64_MAX },
        };
        for (size_t i = 0; i < s2n_array_len(failure_test_values); i++) {
            uint64_t v1 = failure_test_values[i][0];
            uint64_t v2 = failure_test_values[i][1];
            uint64_t max = failure_test_values[i][2];
            EXPECT_FALSE(S2N_ADD_IS_OVERFLOW_SAFE(v1, v2, max));
            EXPECT_FALSE(S2N_ADD_IS_OVERFLOW_SAFE(v2, v1, max));
        }
    }

    END_TEST();
    return 0;
}