1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "stuffer/s2n_stuffer.h"
#include "api/s2n.h"
#include "s2n_test.h"
#include "utils/s2n_mem.h"
int main(int argc, char **argv)
{
uint8_t entropy[2048] = { 0 };
struct s2n_stuffer stuffer = { 0 };
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
BEGIN_TEST();
EXPECT_SUCCESS(s2n_disable_tls13_in_test());
/* Create a 100 byte stuffer */
EXPECT_SUCCESS(s2n_stuffer_alloc(&stuffer, 100));
/* Try to write 101 bytes */
struct s2n_blob in = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&in, entropy, 101));
EXPECT_FAILURE(s2n_stuffer_write(&stuffer, &in));
/* Try to write 101 1-byte ints bytes */
for (uint64_t i = 0; i < 100; i++) {
uint64_t value = i * (0xff / 100);
EXPECT_SUCCESS(s2n_stuffer_write_uint8(&stuffer, value));
}
EXPECT_FAILURE(s2n_stuffer_write_uint8(&stuffer, 1));
struct s2n_blob copy_of_bytes = { 0 };
EXPECT_SUCCESS(s2n_stuffer_extract_blob(&stuffer, ©_of_bytes));
/* Read those back, and expect the same results */
for (uint64_t i = 0; i < 100; i++) {
uint64_t value = i * (0xff / 100);
EXPECT_SUCCESS(s2n_stuffer_read_uint8(&stuffer, &u8));
EXPECT_EQUAL(value, u8);
EXPECT_EQUAL(copy_of_bytes.data[i], u8);
}
/* The copy_of_bytes should have the same values */
for (uint64_t i = 0; i < 100; i++) {
uint64_t value = i * (0xff / 100);
EXPECT_EQUAL(copy_of_bytes.data[i], value);
}
EXPECT_FAILURE(s2n_stuffer_read_uint8(&stuffer, &u8));
/* Try to write 51 2-byte ints bytes */
EXPECT_SUCCESS(s2n_stuffer_wipe(&stuffer));
for (uint64_t i = 0; i < 50; i++) {
uint64_t value = i * (0xffff / 50);
EXPECT_SUCCESS(s2n_stuffer_write_uint16(&stuffer, value));
}
EXPECT_FAILURE(s2n_stuffer_write_uint16(&stuffer, 1));
/* Read those back, and expect the same results */
for (uint64_t i = 0; i < 50; i++) {
uint64_t value = i * (0xffff / 50);
EXPECT_SUCCESS(s2n_stuffer_read_uint16(&stuffer, &u16));
EXPECT_EQUAL(value, u16);
}
EXPECT_FAILURE(s2n_stuffer_read_uint16(&stuffer, &u16));
/* Try to write 34 3-byte ints bytes */
EXPECT_SUCCESS(s2n_stuffer_wipe(&stuffer));
for (uint64_t i = 0; i < 33; i++) {
uint64_t value = i * (0xffffff / 33);
EXPECT_SUCCESS(s2n_stuffer_write_uint24(&stuffer, value));
}
EXPECT_FAILURE(s2n_stuffer_write_uint24(&stuffer, 1));
/* Read those back, and expect the same results */
for (uint64_t i = 0; i < 33; i++) {
uint64_t value = i * (0xffffff / 33);
EXPECT_SUCCESS(s2n_stuffer_read_uint24(&stuffer, &u32));
EXPECT_EQUAL(value, u32);
}
EXPECT_FAILURE(s2n_stuffer_read_uint16(&stuffer, &u16));
/* Try to write 26 4-byte ints bytes */
EXPECT_SUCCESS(s2n_stuffer_wipe(&stuffer));
for (uint64_t i = 0; i < 25; i++) {
uint64_t value = i * (0xffffffff / 25);
EXPECT_SUCCESS(s2n_stuffer_write_uint32(&stuffer, value));
}
EXPECT_FAILURE(s2n_stuffer_write_uint32(&stuffer, 1));
/* Read those back, and expect the same results */
for (uint64_t i = 0; i < 25; i++) {
uint64_t value = i * (0xffffffff / 25);
EXPECT_SUCCESS(s2n_stuffer_read_uint32(&stuffer, &u32));
EXPECT_EQUAL(value, u32);
}
EXPECT_FAILURE(s2n_stuffer_read_uint32(&stuffer, &u32));
/* Try to write 13 8-byte ints bytes */
EXPECT_SUCCESS(s2n_stuffer_wipe(&stuffer));
for (int i = 0; i < 12; i++) {
uint64_t value = i * (0xffffffffffffffff / 12);
EXPECT_SUCCESS(s2n_stuffer_write_uint64(&stuffer, value));
}
EXPECT_FAILURE(s2n_stuffer_write_uint64(&stuffer, 1));
/* Read those back, and expect the same results */
for (int i = 0; i < 12; i++) {
uint64_t value = i * (0xffffffffffffffff / 12);
EXPECT_SUCCESS(s2n_stuffer_read_uint64(&stuffer, &u64));
EXPECT_EQUAL(value, u64);
}
EXPECT_FAILURE(s2n_stuffer_read_uint64(&stuffer, &u64));
EXPECT_SUCCESS(s2n_stuffer_free(&stuffer));
/* Can still read the copy_of_bytes even once the stuffer has been overwritten and freed */
for (uint64_t i = 0; i < 100; i++) {
uint64_t value = i * (0xff / 100);
EXPECT_EQUAL(copy_of_bytes.data[i], value);
}
EXPECT_SUCCESS(s2n_free(©_of_bytes));
#ifndef NDEBUG
/* Invalid blob should fail init */
struct s2n_stuffer s1 = { 0 };
struct s2n_blob b1 = { .data = 0, .size = 101 };
EXPECT_FAILURE(s2n_stuffer_init(&s1, &b1));
#endif
/* Valid empty blob should succeed init */
struct s2n_stuffer s2 = { 0 };
struct s2n_blob b2 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&b2, 0, 0));
EXPECT_SUCCESS(s2n_stuffer_init(&s2, &b2));
/* Valid blob should succeed init */
struct s2n_stuffer s3 = { 0 };
uint8_t a3[12];
struct s2n_blob b3 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&b3, a3, sizeof(a3)));
EXPECT_SUCCESS(s2n_stuffer_init(&s3, &b3));
/* Null blob should fail init */
struct s2n_stuffer s4 = { 0 };
EXPECT_FAILURE(s2n_stuffer_init(&s4, NULL));
/* Null stuffer should fail init */
struct s2n_blob b5 = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&b5, 0, 0));
EXPECT_FAILURE(s2n_stuffer_init(NULL, &b5));
/* Check s2n_stuffer_validate() function */
EXPECT_ERROR(s2n_stuffer_validate(NULL));
uint8_t valid_blob_array[12];
struct s2n_blob blob_valid = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob_valid, valid_blob_array, sizeof(valid_blob_array)));
struct s2n_stuffer stuffer_valid = { 0 };
EXPECT_SUCCESS(s2n_stuffer_init(&stuffer_valid, &blob_valid));
EXPECT_OK(s2n_stuffer_validate(&stuffer));
#ifndef NDEBUG
struct s2n_blob blob_invalid = { .data = 0, .size = sizeof(valid_blob_array) };
struct s2n_stuffer stuffer_invalid1 = { .blob = blob_invalid };
EXPECT_ERROR(s2n_stuffer_validate(&stuffer_invalid1));
struct s2n_stuffer stuffer_invalid2 = { .blob = blob_valid, .write_cursor = 13 };
EXPECT_ERROR(s2n_stuffer_validate(&stuffer_invalid2));
struct s2n_stuffer stuffer_invalid3 = { .blob = blob_valid, .read_cursor = 13 };
EXPECT_ERROR(s2n_stuffer_validate(&stuffer_invalid3));
struct s2n_stuffer stuffer_invalid4 = { .blob = blob_valid, .read_cursor = 12, .write_cursor = 1 };
EXPECT_ERROR(s2n_stuffer_validate(&stuffer_invalid4));
#endif
struct s2n_stuffer reserve_test_stuffer = { 0 };
EXPECT_SUCCESS(s2n_stuffer_alloc(&reserve_test_stuffer, 1024));
EXPECT_EQUAL(s2n_stuffer_space_remaining(&reserve_test_stuffer), 1024);
EXPECT_EQUAL(s2n_stuffer_data_available(&reserve_test_stuffer), 0);
EXPECT_FAILURE(s2n_stuffer_reserve_space(&reserve_test_stuffer, 2048));
EXPECT_EQUAL(s2n_stuffer_space_remaining(&reserve_test_stuffer), 1024);
EXPECT_EQUAL(s2n_stuffer_data_available(&reserve_test_stuffer), 0);
EXPECT_SUCCESS(s2n_stuffer_free(&reserve_test_stuffer));
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&reserve_test_stuffer, 1024));
EXPECT_EQUAL(s2n_stuffer_space_remaining(&reserve_test_stuffer), 1024);
EXPECT_EQUAL(s2n_stuffer_data_available(&reserve_test_stuffer), 0);
EXPECT_SUCCESS(s2n_stuffer_reserve_space(&reserve_test_stuffer, 2048));
EXPECT_EQUAL(s2n_stuffer_space_remaining(&reserve_test_stuffer), 2048);
EXPECT_EQUAL(s2n_stuffer_data_available(&reserve_test_stuffer), 0);
EXPECT_SUCCESS(s2n_stuffer_free(&reserve_test_stuffer));
/* Test: s2n_stuffer_init_written */
{
uint8_t data[] = "hello world";
uint8_t input[sizeof(data)] = { 0 };
uint8_t output[sizeof(data)] = { 0 };
struct s2n_blob blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&blob, input, sizeof(input)));
/* Repeat control to show behavior is consistent */
for (size_t i = 0; i < 3; i++) {
struct s2n_stuffer unwritten_stuffer = { 0 };
EXPECT_SUCCESS(s2n_stuffer_init(&unwritten_stuffer, &blob));
EXPECT_EQUAL(s2n_stuffer_data_available(&unwritten_stuffer), 0);
EXPECT_FAILURE_WITH_ERRNO(s2n_stuffer_read_bytes(&unwritten_stuffer, output, sizeof(output)),
S2N_ERR_STUFFER_OUT_OF_DATA);
EXPECT_SUCCESS(s2n_stuffer_write_bytes(&unwritten_stuffer, data, sizeof(data)));
}
/* Repeat test to show behavior is consistent */
for (size_t i = 0; i < 3; i++) {
struct s2n_stuffer written_stuffer = { 0 };
EXPECT_SUCCESS(s2n_stuffer_init_written(&written_stuffer, &blob));
EXPECT_EQUAL(s2n_stuffer_data_available(&written_stuffer), sizeof(data));
EXPECT_SUCCESS(s2n_stuffer_read_bytes(&written_stuffer, output, sizeof(output)));
EXPECT_BYTEARRAY_EQUAL(data, output, sizeof(output));
EXPECT_FAILURE_WITH_ERRNO(s2n_stuffer_write_bytes(&written_stuffer, data, sizeof(data)),
S2N_ERR_STUFFER_IS_FULL);
}
};
END_TEST();
}
|