1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#if defined(__FreeBSD__) || defined(__APPLE__)
/* https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_socket.h.html
* The POSIX standard does not define the CMSG_LEN and CMSG_SPACE macros. FreeBSD
* and APPLE check and disable these macros if the _POSIX_C_SOURCE flag is set.
*
* Since s2n-tls already unsets the _POSIX_C_SOURCE in other files and is not
* POSIX compliant, we continue the pattern here.
*/
#undef _POSIX_C_SOURCE
#endif
#include <sys/socket.h>
#ifdef S2N_LINUX_SENDFILE
#include <sys/sendfile.h>
#endif
#include "crypto/s2n_sequence.h"
#include "error/s2n_errno.h"
#include "tls/s2n_ktls.h"
#include "tls/s2n_tls.h"
#include "utils/s2n_io.h"
#include "utils/s2n_result.h"
#include "utils/s2n_safety.h"
#include "utils/s2n_socket.h"
/* record_type is of type uint8_t */
#define S2N_KTLS_RECORD_TYPE_SIZE (sizeof(uint8_t))
#define S2N_KTLS_CONTROL_BUFFER_SIZE (CMSG_SPACE(S2N_KTLS_RECORD_TYPE_SIZE))
#define S2N_MAX_STACK_IOVECS 16
#define S2N_MAX_STACK_IOVECS_MEM (S2N_MAX_STACK_IOVECS * sizeof(struct iovec))
/* Used to override sendmsg and recvmsg for testing. */
static ssize_t s2n_ktls_default_sendmsg(void *io_context, const struct msghdr *msg);
static ssize_t s2n_ktls_default_recvmsg(void *io_context, struct msghdr *msg);
s2n_ktls_sendmsg_fn s2n_sendmsg_fn = s2n_ktls_default_sendmsg;
s2n_ktls_recvmsg_fn s2n_recvmsg_fn = s2n_ktls_default_recvmsg;
S2N_RESULT s2n_ktls_set_sendmsg_cb(struct s2n_connection *conn, s2n_ktls_sendmsg_fn send_cb,
void *send_ctx)
{
RESULT_ENSURE_REF(conn);
RESULT_ENSURE_REF(send_ctx);
RESULT_ENSURE(s2n_in_test(), S2N_ERR_NOT_IN_TEST);
conn->send_io_context = send_ctx;
s2n_sendmsg_fn = send_cb;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_ktls_set_recvmsg_cb(struct s2n_connection *conn, s2n_ktls_recvmsg_fn recv_cb,
void *recv_ctx)
{
RESULT_ENSURE_REF(conn);
RESULT_ENSURE_REF(recv_ctx);
RESULT_ENSURE(s2n_in_test(), S2N_ERR_NOT_IN_TEST);
conn->recv_io_context = recv_ctx;
s2n_recvmsg_fn = recv_cb;
return S2N_RESULT_OK;
}
static ssize_t s2n_ktls_default_recvmsg(void *io_context, struct msghdr *msg)
{
POSIX_ENSURE_REF(io_context);
POSIX_ENSURE_REF(msg);
const struct s2n_socket_read_io_context *peer_socket_ctx = io_context;
POSIX_ENSURE_REF(peer_socket_ctx);
int fd = peer_socket_ctx->fd;
return recvmsg(fd, msg, 0);
}
static ssize_t s2n_ktls_default_sendmsg(void *io_context, const struct msghdr *msg)
{
POSIX_ENSURE_REF(io_context);
POSIX_ENSURE_REF(msg);
const struct s2n_socket_write_io_context *peer_socket_ctx = io_context;
POSIX_ENSURE_REF(peer_socket_ctx);
int fd = peer_socket_ctx->fd;
return sendmsg(fd, msg, 0);
}
S2N_RESULT s2n_ktls_set_control_data(struct msghdr *msg, char *buf, size_t buf_size,
int cmsg_type, uint8_t record_type)
{
RESULT_ENSURE_REF(msg);
RESULT_ENSURE_REF(buf);
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* To create ancillary data, first initialize the msg_controllen
* member of the msghdr with the length of the control message
* buffer.
*/
msg->msg_control = buf;
msg->msg_controllen = buf_size;
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* Use CMSG_FIRSTHDR() on the msghdr to get the first
* control message and CMSG_NXTHDR() to get all subsequent ones.
*/
struct cmsghdr *hdr = CMSG_FIRSTHDR(msg);
RESULT_ENSURE_REF(hdr);
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* In each control message, initialize cmsg_len (with CMSG_LEN()), the
* other cmsghdr header fields, and the data portion using
* CMSG_DATA().
*/
hdr->cmsg_len = CMSG_LEN(S2N_KTLS_RECORD_TYPE_SIZE);
hdr->cmsg_level = S2N_SOL_TLS;
hdr->cmsg_type = cmsg_type;
*CMSG_DATA(hdr) = record_type;
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* Finally, the msg_controllen field of the msghdr
* should be set to the sum of the CMSG_SPACE() of the length of all
* control messages in the buffer
*/
RESULT_ENSURE_GTE(msg->msg_controllen, CMSG_SPACE(S2N_KTLS_RECORD_TYPE_SIZE));
msg->msg_controllen = CMSG_SPACE(S2N_KTLS_RECORD_TYPE_SIZE);
return S2N_RESULT_OK;
}
/* Expect to receive a single cmsghdr containing the TLS record_type.
*
* s2n-tls allocates enough space to receive a single cmsghdr. Since this is
* used to get the record_type when receiving over kTLS (enabled via
* `s2n_connection_ktls_enable_recv`), the application should not configure
* the socket to receive additional control messages. In the event s2n-tls
* can not retrieve the record_type, it is safer to drop the record.
*/
S2N_RESULT s2n_ktls_get_control_data(struct msghdr *msg, int cmsg_type, uint8_t *record_type)
{
RESULT_ENSURE_REF(msg);
RESULT_ENSURE_REF(record_type);
/* https://man7.org/linux/man-pages/man3/recvmsg.3p.html
* MSG_CTRUNC Control data was truncated.
*/
if (msg->msg_flags & MSG_CTRUNC) {
RESULT_BAIL(S2N_ERR_KTLS_BAD_CMSG);
}
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* To create ancillary data, first initialize the msg_controllen
* member of the msghdr with the length of the control message
* buffer.
*/
RESULT_ENSURE(msg->msg_control, S2N_ERR_SAFETY);
RESULT_ENSURE(msg->msg_controllen >= CMSG_SPACE(S2N_KTLS_RECORD_TYPE_SIZE), S2N_ERR_SAFETY);
/* https://man7.org/linux/man-pages/man3/cmsg.3.html
* Use CMSG_FIRSTHDR() on the msghdr to get the first
* control message and CMSG_NXTHDR() to get all subsequent ones.
*/
struct cmsghdr *hdr = CMSG_FIRSTHDR(msg);
RESULT_ENSURE(hdr, S2N_ERR_KTLS_BAD_CMSG);
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* In each control message, initialize cmsg_len (with CMSG_LEN()), the
* other cmsghdr header fields, and the data portion using
* CMSG_DATA().
*/
RESULT_ENSURE(hdr->cmsg_level == S2N_SOL_TLS, S2N_ERR_KTLS_BAD_CMSG);
RESULT_ENSURE(hdr->cmsg_type == cmsg_type, S2N_ERR_KTLS_BAD_CMSG);
RESULT_ENSURE(hdr->cmsg_len == CMSG_LEN(S2N_KTLS_RECORD_TYPE_SIZE), S2N_ERR_KTLS_BAD_CMSG);
*record_type = *CMSG_DATA(hdr);
return S2N_RESULT_OK;
}
S2N_RESULT s2n_ktls_sendmsg(void *io_context, uint8_t record_type, const struct iovec *msg_iov,
size_t msg_iovlen, s2n_blocked_status *blocked, size_t *bytes_written)
{
RESULT_ENSURE_REF(bytes_written);
RESULT_ENSURE_REF(blocked);
RESULT_ENSURE(msg_iov != NULL || msg_iovlen == 0, S2N_ERR_NULL);
*blocked = S2N_BLOCKED_ON_WRITE;
*bytes_written = 0;
struct msghdr msg = {
/* msghdr requires a non-const iovec. This is safe because s2n-tls does
* not modify msg_iov after this point.
*/
.msg_iov = (struct iovec *) (uintptr_t) msg_iov,
.msg_iovlen = msg_iovlen,
};
char control_data[S2N_KTLS_CONTROL_BUFFER_SIZE] = { 0 };
RESULT_GUARD(s2n_ktls_set_control_data(&msg, control_data, sizeof(control_data),
S2N_TLS_SET_RECORD_TYPE, record_type));
ssize_t result = 0;
S2N_IO_RETRY_EINTR(result, s2n_sendmsg_fn(io_context, &msg));
RESULT_GUARD(s2n_io_check_write_result(result));
*blocked = S2N_NOT_BLOCKED;
*bytes_written = result;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_ktls_recvmsg(void *io_context, uint8_t *record_type, uint8_t *buf,
size_t buf_len, s2n_blocked_status *blocked, size_t *bytes_read)
{
RESULT_ENSURE_REF(record_type);
RESULT_ENSURE_REF(bytes_read);
RESULT_ENSURE_REF(blocked);
RESULT_ENSURE_REF(buf);
/* Ensure that buf_len is > 0 since trying to receive 0 bytes does not
* make sense and a return value of `0` from recvmsg is treated as EOF.
*/
RESULT_ENSURE_GT(buf_len, 0);
*blocked = S2N_BLOCKED_ON_READ;
*record_type = 0;
*bytes_read = 0;
struct iovec msg_iov = {
.iov_base = buf,
.iov_len = buf_len
};
struct msghdr msg = {
.msg_iov = &msg_iov,
.msg_iovlen = 1,
};
/*
* https://man7.org/linux/man-pages/man3/cmsg.3.html
* To create ancillary data, first initialize the msg_controllen
* member of the msghdr with the length of the control message
* buffer.
*/
char control_data[S2N_KTLS_CONTROL_BUFFER_SIZE] = { 0 };
msg.msg_controllen = sizeof(control_data);
msg.msg_control = control_data;
ssize_t result = 0;
S2N_IO_RETRY_EINTR(result, s2n_recvmsg_fn(io_context, &msg));
RESULT_GUARD(s2n_io_check_read_result(result));
RESULT_GUARD(s2n_ktls_get_control_data(&msg, S2N_TLS_GET_RECORD_TYPE, record_type));
*blocked = S2N_NOT_BLOCKED;
*bytes_read = result;
return S2N_RESULT_OK;
}
/* The RFC defines the encryption limits in terms of "full-size records" sent.
* We can estimate the number of "full-sized records" sent by assuming that
* all records are full-sized.
*/
static S2N_RESULT s2n_ktls_estimate_records(size_t bytes, uint64_t *estimate)
{
RESULT_ENSURE_REF(estimate);
uint64_t records = bytes / S2N_TLS_MAXIMUM_FRAGMENT_LENGTH;
if (bytes % S2N_TLS_MAXIMUM_FRAGMENT_LENGTH) {
records++;
}
*estimate = records;
return S2N_RESULT_OK;
}
/* ktls does not currently support updating keys, so we should kill the connection
* when the key encryption limit is reached. We could get the current record
* sequence number from the kernel with getsockopt, but that requires a surprisingly
* expensive syscall.
*
* Instead, we track the estimated sequence number and enforce the limit based
* on that estimate.
*/
static S2N_RESULT s2n_ktls_check_estimated_record_limit(
struct s2n_connection *conn, size_t bytes_requested)
{
RESULT_ENSURE_REF(conn);
if (conn->actual_protocol_version < S2N_TLS13) {
return S2N_RESULT_OK;
}
uint64_t new_records_sent = 0;
RESULT_GUARD(s2n_ktls_estimate_records(bytes_requested, &new_records_sent));
uint64_t old_records_sent = 0;
struct s2n_blob seq_num = { 0 };
RESULT_GUARD(s2n_connection_get_sequence_number(conn, conn->mode, &seq_num));
RESULT_GUARD_POSIX(s2n_sequence_number_to_uint64(&seq_num, &old_records_sent));
RESULT_ENSURE(S2N_ADD_IS_OVERFLOW_SAFE(old_records_sent, new_records_sent, UINT64_MAX),
S2N_ERR_KTLS_KEY_LIMIT);
uint64_t total_records_sent = old_records_sent + new_records_sent;
RESULT_ENSURE_REF(conn->secure);
RESULT_ENSURE_REF(conn->secure->cipher_suite);
RESULT_ENSURE_REF(conn->secure->cipher_suite->record_alg);
uint64_t encryption_limit = conn->secure->cipher_suite->record_alg->encryption_limit;
RESULT_ENSURE(total_records_sent <= encryption_limit, S2N_ERR_KTLS_KEY_LIMIT);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_ktls_set_estimated_sequence_number(
struct s2n_connection *conn, size_t bytes_written)
{
RESULT_ENSURE_REF(conn);
if (conn->actual_protocol_version < S2N_TLS13) {
return S2N_RESULT_OK;
}
uint64_t new_records_sent = 0;
RESULT_GUARD(s2n_ktls_estimate_records(bytes_written, &new_records_sent));
struct s2n_blob seq_num = { 0 };
RESULT_GUARD(s2n_connection_get_sequence_number(conn, conn->mode, &seq_num));
for (size_t i = 0; i < new_records_sent; i++) {
RESULT_GUARD_POSIX(s2n_increment_sequence_number(&seq_num));
}
return S2N_RESULT_OK;
}
/* The iovec array `bufs` is constant and owned by the application.
*
* However, we need to apply the given offset to `bufs`. That may involve
* updating the iov_base and iov_len of entries in `bufs` to reflect the bytes
* already sent. Because `bufs` is constant, we need to instead copy `bufs` and
* modify the copy.
*
* Since one of the primary benefits of kTLS is that we avoid buffering application
* data and can pass application data as-is to the kernel, we try to limit the
* situations where we need to copy `bufs` and use stack memory where possible.
*
* Note: We are copying an array of iovecs here, NOT the scattered application
* data the iovecs reference. On Linux, the maximum data copied would be
* 1024 (IOV_MAX on Linux) * 16 (sizeof(struct iovec)) = ~16KB.
*
* To avoid any copies when using a large number of iovecs, applications should
* call s2n_sendv instead of s2n_sendv_with_offset.
*/
static S2N_RESULT s2n_ktls_update_bufs_with_offset(const struct iovec **bufs, size_t *count,
size_t offs, struct s2n_blob *mem)
{
RESULT_ENSURE_REF(bufs);
RESULT_ENSURE_REF(count);
RESULT_ENSURE(*bufs != NULL || *count == 0, S2N_ERR_NULL);
RESULT_ENSURE_REF(mem);
size_t skipped = 0;
while (offs > 0) {
/* If we need to skip more iovecs than actually exist,
* then the offset is too large and therefore invalid.
*/
RESULT_ENSURE(skipped < *count, S2N_ERR_INVALID_ARGUMENT);
size_t iov_len = (*bufs)[skipped].iov_len;
/* This is the last iovec affected by the offset. */
if (offs < iov_len) {
break;
}
offs -= iov_len;
skipped++;
}
*count = (*count) - skipped;
if (*count == 0) {
return S2N_RESULT_OK;
}
*bufs = &(*bufs)[skipped];
if (offs == 0) {
return S2N_RESULT_OK;
}
size_t size = (*count) * (sizeof(struct iovec));
/* If possible, use the existing stack memory in `mem` for the copy.
* Otherwise, we need to allocate sufficient new heap memory. */
if (size > mem->size) {
RESULT_GUARD_POSIX(s2n_alloc(mem, size));
}
struct iovec *new_bufs = (struct iovec *) (void *) mem->data;
RESULT_CHECKED_MEMCPY(new_bufs, *bufs, size);
new_bufs[0].iov_base = (uint8_t *) new_bufs[0].iov_base + offs;
new_bufs[0].iov_len = new_bufs[0].iov_len - offs;
*bufs = new_bufs;
return S2N_RESULT_OK;
}
ssize_t s2n_ktls_sendv_with_offset(struct s2n_connection *conn, const struct iovec *bufs,
ssize_t count_in, ssize_t offs_in, s2n_blocked_status *blocked)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE(count_in >= 0, S2N_ERR_INVALID_ARGUMENT);
size_t count = count_in;
POSIX_ENSURE(offs_in >= 0, S2N_ERR_INVALID_ARGUMENT);
size_t offs = offs_in;
ssize_t total_bytes = 0;
POSIX_GUARD_RESULT(s2n_sendv_with_offset_total_size(bufs, count_in, offs_in, &total_bytes));
POSIX_GUARD_RESULT(s2n_ktls_check_estimated_record_limit(conn, total_bytes));
/* The order of new_bufs and new_bufs_mem matters. See https://github.com/aws/s2n-tls/issues/4354 */
uint8_t new_bufs_mem[S2N_MAX_STACK_IOVECS_MEM] = { 0 };
DEFER_CLEANUP(struct s2n_blob new_bufs = { 0 }, s2n_free_or_wipe);
POSIX_GUARD(s2n_blob_init(&new_bufs, new_bufs_mem, sizeof(new_bufs_mem)));
if (offs > 0) {
POSIX_GUARD_RESULT(s2n_ktls_update_bufs_with_offset(&bufs, &count, offs, &new_bufs));
}
size_t bytes_written = 0;
POSIX_GUARD_RESULT(s2n_ktls_sendmsg(conn->send_io_context, TLS_APPLICATION_DATA,
bufs, count, blocked, &bytes_written));
POSIX_GUARD_RESULT(s2n_ktls_set_estimated_sequence_number(conn, bytes_written));
return bytes_written;
}
int s2n_ktls_send_cb(void *io_context, const uint8_t *buf, uint32_t len)
{
POSIX_ENSURE_REF(io_context);
POSIX_ENSURE_REF(buf);
/* For now, all control records are assumed to be alerts.
* We can set the record_type on the io_context in the future.
*/
const uint8_t record_type = TLS_ALERT;
const struct iovec iov = {
.iov_base = (void *) (uintptr_t) buf,
.iov_len = len,
};
s2n_blocked_status blocked = S2N_NOT_BLOCKED;
size_t bytes_written = 0;
POSIX_GUARD_RESULT(s2n_ktls_sendmsg(io_context, record_type, &iov, 1,
&blocked, &bytes_written));
POSIX_ENSURE_LTE(bytes_written, len);
return bytes_written;
}
int s2n_ktls_record_writev(struct s2n_connection *conn, uint8_t content_type,
const struct iovec *in, int in_count, size_t offs, size_t to_write)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE(in_count > 0, S2N_ERR_INVALID_ARGUMENT);
size_t count = in_count;
POSIX_ENSURE_REF(in);
/* Currently, ktls only supports sending alerts.
* To also support handshake messages, we would need a way to track record_type.
* We could add a field to the send io context.
*/
POSIX_ENSURE(content_type == TLS_ALERT, S2N_ERR_UNIMPLEMENTED);
/* When stuffers automatically resize, they allocate a potentially large
* chunk of memory to avoid repeated resizes.
* Since ktls only uses conn->out for control messages (alerts and eventually
* handshake messages), we expect infrequent small writes with conn->out
* freed in between. Since we're therefore more concerned with the size of
* the allocation than the frequency, use a more accurate size for each write.
*/
POSIX_GUARD(s2n_stuffer_resize_if_empty(&conn->out, to_write));
POSIX_GUARD(s2n_stuffer_writev_bytes(&conn->out, in, count, offs, to_write));
return to_write;
}
int s2n_sendfile(struct s2n_connection *conn, int in_fd, off_t offset, size_t count,
size_t *bytes_written, s2n_blocked_status *blocked)
{
POSIX_ENSURE_REF(blocked);
*blocked = S2N_BLOCKED_ON_WRITE;
POSIX_ENSURE_REF(bytes_written);
*bytes_written = 0;
POSIX_ENSURE_REF(conn);
POSIX_ENSURE(conn->ktls_send_enabled, S2N_ERR_KTLS_UNSUPPORTED_CONN);
POSIX_GUARD_RESULT(s2n_ktls_check_estimated_record_limit(conn, count));
int out_fd = 0;
POSIX_GUARD_RESULT(s2n_ktls_get_file_descriptor(conn, S2N_KTLS_MODE_SEND, &out_fd));
#ifdef S2N_LINUX_SENDFILE
/* https://man7.org/linux/man-pages/man2/sendfile.2.html */
ssize_t result = 0;
S2N_IO_RETRY_EINTR(result, sendfile(out_fd, in_fd, &offset, count));
POSIX_GUARD_RESULT(s2n_io_check_write_result(result));
*bytes_written = result;
#else
POSIX_BAIL(S2N_ERR_UNIMPLEMENTED);
#endif
POSIX_GUARD_RESULT(s2n_ktls_set_estimated_sequence_number(conn, *bytes_written));
*blocked = S2N_NOT_BLOCKED;
return S2N_SUCCESS;
}
int s2n_ktls_read_full_record(struct s2n_connection *conn, uint8_t *record_type)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(record_type);
/* If any unread data remains in conn->in, it must be application data that
* couldn't be returned due to the size of the application's provided buffer.
*/
if (s2n_stuffer_data_available(&conn->in)) {
*record_type = TLS_APPLICATION_DATA;
return S2N_SUCCESS;
}
POSIX_GUARD(s2n_stuffer_resize_if_empty(&conn->in, S2N_DEFAULT_FRAGMENT_LENGTH));
struct s2n_stuffer record_stuffer = conn->in;
size_t len = s2n_stuffer_space_remaining(&record_stuffer);
uint8_t *buf = s2n_stuffer_raw_write(&record_stuffer, len);
POSIX_ENSURE_REF(buf);
s2n_blocked_status blocked = S2N_NOT_BLOCKED;
size_t bytes_read = 0;
/* Since recvmsg is responsible for decrypting the record in ktls,
* we apply blinding to the recvmsg call.
*/
s2n_result result = s2n_ktls_recvmsg(conn->recv_io_context, record_type,
buf, len, &blocked, &bytes_read);
WITH_ERROR_BLINDING(conn, POSIX_GUARD_RESULT(result));
POSIX_GUARD(s2n_stuffer_skip_write(&conn->in, bytes_read));
return S2N_SUCCESS;
}
|