1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "tls/s2n_tls13_handshake.h"
#include "tls/s2n_cipher_suites.h"
#include "tls/s2n_key_log.h"
#include "tls/s2n_security_policies.h"
static int s2n_zero_sequence_number(struct s2n_connection *conn, s2n_mode mode)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(conn->secure);
struct s2n_blob sequence_number = { 0 };
POSIX_GUARD_RESULT(s2n_connection_get_sequence_number(conn, mode, &sequence_number));
POSIX_GUARD(s2n_blob_zero(&sequence_number));
return S2N_SUCCESS;
}
int s2n_tls13_mac_verify(struct s2n_tls13_keys *keys, struct s2n_blob *finished_verify, struct s2n_blob *wire_verify)
{
POSIX_ENSURE_REF(wire_verify->data);
POSIX_ENSURE_EQ(wire_verify->size, keys->size);
S2N_ERROR_IF(!s2n_constant_time_equals(finished_verify->data, wire_verify->data, keys->size), S2N_ERR_BAD_MESSAGE);
return S2N_SUCCESS;
}
int s2n_tls13_keys_from_conn(struct s2n_tls13_keys *keys, struct s2n_connection *conn)
{
POSIX_GUARD(s2n_tls13_keys_init(keys, conn->secure->cipher_suite->prf_alg));
return S2N_SUCCESS;
}
int s2n_tls13_compute_ecc_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret)
{
POSIX_ENSURE_REF(conn);
const struct s2n_ecc_preferences *ecc_preferences = NULL;
POSIX_GUARD(s2n_connection_get_ecc_preferences(conn, &ecc_preferences));
POSIX_ENSURE_REF(ecc_preferences);
struct s2n_ecc_evp_params *server_key = &conn->kex_params.server_ecc_evp_params;
POSIX_ENSURE_REF(server_key);
POSIX_ENSURE_REF(server_key->negotiated_curve);
struct s2n_ecc_evp_params *client_key = &conn->kex_params.client_ecc_evp_params;
POSIX_ENSURE_REF(client_key);
POSIX_ENSURE_REF(client_key->negotiated_curve);
POSIX_ENSURE_EQ(server_key->negotiated_curve, client_key->negotiated_curve);
if (conn->mode == S2N_CLIENT) {
POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(client_key, server_key, shared_secret));
} else {
POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(server_key, client_key, shared_secret));
}
return S2N_SUCCESS;
}
/* Computes the ECDHE+PQKEM hybrid shared secret as defined in
* https://tools.ietf.org/html/draft-stebila-tls-hybrid-design */
int s2n_tls13_compute_pq_hybrid_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(shared_secret);
/* conn->kex_params.server_ecc_evp_params should be set only during a classic/non-hybrid handshake */
POSIX_ENSURE_EQ(NULL, conn->kex_params.server_ecc_evp_params.negotiated_curve);
POSIX_ENSURE_EQ(NULL, conn->kex_params.server_ecc_evp_params.evp_pkey);
struct s2n_kem_group_params *server_kem_group_params = &conn->kex_params.server_kem_group_params;
POSIX_ENSURE_REF(server_kem_group_params);
struct s2n_ecc_evp_params *server_ecc_params = &server_kem_group_params->ecc_params;
POSIX_ENSURE_REF(server_ecc_params);
struct s2n_kem_group_params *client_kem_group_params = &conn->kex_params.client_kem_group_params;
POSIX_ENSURE_REF(client_kem_group_params);
struct s2n_ecc_evp_params *client_ecc_params = &client_kem_group_params->ecc_params;
POSIX_ENSURE_REF(client_ecc_params);
DEFER_CLEANUP(struct s2n_blob ecdhe_shared_secret = { 0 }, s2n_free_or_wipe);
/* Compute the ECDHE shared secret, and retrieve the PQ shared secret. */
if (conn->mode == S2N_CLIENT) {
POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(client_ecc_params, server_ecc_params, &ecdhe_shared_secret));
} else {
POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(server_ecc_params, client_ecc_params, &ecdhe_shared_secret));
}
struct s2n_blob *pq_shared_secret = &client_kem_group_params->kem_params.shared_secret;
POSIX_ENSURE_REF(pq_shared_secret);
POSIX_ENSURE_REF(pq_shared_secret->data);
const struct s2n_kem_group *negotiated_kem_group = conn->kex_params.server_kem_group_params.kem_group;
POSIX_ENSURE_REF(negotiated_kem_group);
POSIX_ENSURE_REF(negotiated_kem_group->kem);
POSIX_ENSURE_EQ(pq_shared_secret->size, negotiated_kem_group->kem->shared_secret_key_length);
/* Construct the concatenated/hybrid shared secret */
uint32_t hybrid_shared_secret_size = ecdhe_shared_secret.size + negotiated_kem_group->kem->shared_secret_key_length;
POSIX_GUARD(s2n_alloc(shared_secret, hybrid_shared_secret_size));
struct s2n_stuffer stuffer_combiner = { 0 };
POSIX_GUARD(s2n_stuffer_init(&stuffer_combiner, shared_secret));
POSIX_GUARD(s2n_stuffer_write(&stuffer_combiner, &ecdhe_shared_secret));
POSIX_GUARD(s2n_stuffer_write(&stuffer_combiner, pq_shared_secret));
return S2N_SUCCESS;
}
static int s2n_tls13_pq_hybrid_supported(struct s2n_connection *conn)
{
return conn->kex_params.server_kem_group_params.kem_group != NULL;
}
int s2n_tls13_compute_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret)
{
POSIX_ENSURE_REF(conn);
if (s2n_tls13_pq_hybrid_supported(conn)) {
POSIX_GUARD(s2n_tls13_compute_pq_hybrid_shared_secret(conn, shared_secret));
} else {
POSIX_GUARD(s2n_tls13_compute_ecc_shared_secret(conn, shared_secret));
}
POSIX_GUARD_RESULT(s2n_connection_wipe_all_keyshares(conn));
/* It would make more sense to wipe the PSK secrets in s2n_tls13_handle_early_secret,
* but at that point we don't know whether or not the server will request a HRR request
* and we'll have to use the secrets again.
*
* Instead, wipe them here when we wipe all the other connection secrets. */
POSIX_GUARD_RESULT(s2n_psk_parameters_wipe_secrets(&conn->psk_params));
return S2N_SUCCESS;
}
int s2n_update_application_traffic_keys(struct s2n_connection *conn, s2n_mode mode, keyupdate_status status)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(conn->secure);
POSIX_ENSURE_GTE(conn->actual_protocol_version, S2N_TLS13);
/* get tls13 key context */
s2n_tls13_connection_keys(keys, conn);
struct s2n_session_key *old_key;
struct s2n_blob old_app_secret = { 0 };
struct s2n_blob app_iv = { 0 };
if (mode == S2N_CLIENT) {
old_key = &conn->secure->client_key;
POSIX_GUARD(s2n_blob_init(&old_app_secret, conn->secrets.version.tls13.client_app_secret, keys.size));
POSIX_GUARD(s2n_blob_init(&app_iv, conn->secure->client_implicit_iv, S2N_TLS13_FIXED_IV_LEN));
} else {
old_key = &conn->secure->server_key;
POSIX_GUARD(s2n_blob_init(&old_app_secret, conn->secrets.version.tls13.server_app_secret, keys.size));
POSIX_GUARD(s2n_blob_init(&app_iv, conn->secure->server_implicit_iv, S2N_TLS13_FIXED_IV_LEN));
}
/* Produce new application secret */
s2n_stack_blob(app_secret_update, keys.size, S2N_TLS13_SECRET_MAX_LEN);
/* Derives next generation of traffic secret */
POSIX_GUARD(s2n_tls13_update_application_traffic_secret(&keys, &old_app_secret, &app_secret_update));
s2n_tls13_key_blob(app_key, conn->secure->cipher_suite->record_alg->cipher->key_material_size);
/* Derives next generation of traffic key */
uint8_t *count = NULL;
POSIX_GUARD(s2n_tls13_derive_traffic_keys(&keys, &app_secret_update, &app_key, &app_iv));
if (status == RECEIVING) {
POSIX_GUARD(conn->secure->cipher_suite->record_alg->cipher->set_decryption_key(old_key, &app_key));
count = &conn->recv_key_updated;
} else {
POSIX_GUARD(conn->secure->cipher_suite->record_alg->cipher->set_encryption_key(old_key, &app_key));
count = &conn->send_key_updated;
}
/* Increment the count.
* Don't treat overflows as errors-- we only do best-effort reporting.
*/
*count = MIN(UINT8_MAX, *count + 1);
/* According to https://tools.ietf.org/html/rfc8446#section-5.3:
* Each sequence number is set to zero at the beginning of a connection and
* whenever the key is changed; the first record transmitted under a particular traffic key
* MUST use sequence number 0.
*/
POSIX_GUARD(s2n_zero_sequence_number(conn, mode));
/* Save updated secret */
struct s2n_stuffer old_secret_stuffer = { 0 };
POSIX_GUARD(s2n_stuffer_init(&old_secret_stuffer, &old_app_secret));
POSIX_GUARD(s2n_stuffer_write_bytes(&old_secret_stuffer, app_secret_update.data, keys.size));
return S2N_SUCCESS;
}
|