1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "utils/s2n_array.h"
#include <sys/param.h>
#include "utils/s2n_blob.h"
#include "utils/s2n_mem.h"
#include "utils/s2n_safety.h"
S2N_RESULT s2n_array_validate(const struct s2n_array *array)
{
uint32_t mem_size = 0;
RESULT_ENSURE_REF(array);
RESULT_GUARD(s2n_blob_validate(&array->mem));
RESULT_ENSURE_NE(array->element_size, 0);
RESULT_GUARD_POSIX(s2n_mul_overflow(array->len, array->element_size, &mem_size));
RESULT_ENSURE_GTE(array->mem.size, mem_size);
RESULT_ENSURE(S2N_IMPLIES(array->mem.size, array->mem.growable), S2N_ERR_SAFETY);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_array_enlarge(struct s2n_array *array, uint32_t capacity)
{
RESULT_ENSURE_REF(array);
/* Acquire the memory */
uint32_t mem_needed;
RESULT_GUARD_POSIX(s2n_mul_overflow(array->element_size, capacity, &mem_needed));
RESULT_GUARD_POSIX(s2n_realloc(&array->mem, mem_needed));
/* Zero the extened part */
uint32_t array_elements_size;
RESULT_GUARD_POSIX(s2n_mul_overflow(array->element_size, array->len, &array_elements_size));
RESULT_CHECKED_MEMSET(array->mem.data + array_elements_size, 0, array->mem.size - array_elements_size);
RESULT_POSTCONDITION(s2n_array_validate(array));
return S2N_RESULT_OK;
}
struct s2n_array *s2n_array_new(uint32_t element_size)
{
struct s2n_array *array = s2n_array_new_with_capacity(element_size, S2N_INITIAL_ARRAY_SIZE);
PTR_ENSURE_REF(array);
return array;
}
struct s2n_array *s2n_array_new_with_capacity(uint32_t element_size, uint32_t capacity)
{
DEFER_CLEANUP(struct s2n_blob mem = { 0 }, s2n_free);
PTR_GUARD_POSIX(s2n_alloc(&mem, sizeof(struct s2n_array)));
DEFER_CLEANUP(struct s2n_array *array = (void *) mem.data, s2n_array_free_p);
ZERO_TO_DISABLE_DEFER_CLEANUP(mem);
PTR_GUARD_RESULT(s2n_array_init_with_capacity(array, element_size, capacity));
struct s2n_array *array_ret = array;
ZERO_TO_DISABLE_DEFER_CLEANUP(array);
return array_ret;
}
S2N_RESULT s2n_array_init(struct s2n_array *array, uint32_t element_size)
{
RESULT_ENSURE_REF(array);
RESULT_GUARD(s2n_array_init_with_capacity(array, element_size, 0));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_init_with_capacity(struct s2n_array *array, uint32_t element_size, uint32_t capacity)
{
RESULT_ENSURE_REF(array);
*array = (struct s2n_array){ .element_size = element_size };
RESULT_GUARD(s2n_array_enlarge(array, capacity));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_pushback(struct s2n_array *array, void **element)
{
RESULT_PRECONDITION(s2n_array_validate(array));
RESULT_ENSURE_REF(element);
return s2n_array_insert(array, array->len, element);
}
S2N_RESULT s2n_array_get(struct s2n_array *array, uint32_t idx, void **element)
{
RESULT_PRECONDITION(s2n_array_validate(array));
RESULT_ENSURE_REF(element);
RESULT_ENSURE(idx < array->len, S2N_ERR_ARRAY_INDEX_OOB);
*element = array->mem.data + (array->element_size * idx);
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_insert_and_copy(struct s2n_array *array, uint32_t idx, void *element)
{
void *insert_location = NULL;
RESULT_GUARD(s2n_array_insert(array, idx, &insert_location));
RESULT_CHECKED_MEMCPY(insert_location, element, array->element_size);
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_insert(struct s2n_array *array, uint32_t idx, void **element)
{
RESULT_PRECONDITION(s2n_array_validate(array));
RESULT_ENSURE_REF(element);
/* index == len is ok since we're about to add one element */
RESULT_ENSURE(idx <= array->len, S2N_ERR_ARRAY_INDEX_OOB);
/* We are about to add one more element to the array. Add capacity if necessary */
uint32_t current_capacity = 0;
RESULT_GUARD(s2n_array_capacity(array, ¤t_capacity));
if (array->len >= current_capacity) {
/* Enlarge the array */
uint32_t new_capacity = 0;
RESULT_GUARD_POSIX(s2n_mul_overflow(current_capacity, 2, &new_capacity));
new_capacity = MAX(new_capacity, S2N_INITIAL_ARRAY_SIZE);
RESULT_GUARD(s2n_array_enlarge(array, new_capacity));
}
/* If we are adding at an existing index, slide everything down. */
if (idx < array->len) {
uint32_t size = 0;
RESULT_GUARD_POSIX(s2n_mul_overflow(array->len - idx, array->element_size, &size));
memmove(array->mem.data + array->element_size * (idx + 1),
array->mem.data + array->element_size * idx,
size);
}
*element = array->mem.data + array->element_size * idx;
array->len++;
RESULT_POSTCONDITION(s2n_array_validate(array));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_remove(struct s2n_array *array, uint32_t idx)
{
RESULT_PRECONDITION(s2n_array_validate(array));
RESULT_ENSURE(idx < array->len, S2N_ERR_ARRAY_INDEX_OOB);
/* If the removed element is the last one, no need to move anything.
* Otherwise, shift everything down */
if (idx != array->len - 1) {
uint32_t size = 0;
RESULT_GUARD_POSIX(s2n_mul_overflow(array->len - idx - 1, array->element_size, &size));
memmove(array->mem.data + array->element_size * idx,
array->mem.data + array->element_size * (idx + 1),
size);
}
array->len--;
/* After shifting, zero the last element */
RESULT_CHECKED_MEMSET(array->mem.data + array->element_size * array->len,
0,
array->element_size);
RESULT_POSTCONDITION(s2n_array_validate(array));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_num_elements(struct s2n_array *array, uint32_t *len)
{
RESULT_PRECONDITION(s2n_array_validate(array));
RESULT_ENSURE_MUT(len);
*len = array->len;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_capacity(struct s2n_array *array, uint32_t *capacity)
{
RESULT_PRECONDITION(s2n_array_validate(array));
RESULT_ENSURE_MUT(capacity);
*capacity = array->mem.size / array->element_size;
return S2N_RESULT_OK;
}
S2N_CLEANUP_RESULT s2n_array_free_p(struct s2n_array **parray)
{
RESULT_ENSURE_REF(parray);
struct s2n_array *array = *parray;
if (array == NULL) {
return S2N_RESULT_OK;
}
/* Free the elements */
RESULT_GUARD_POSIX(s2n_free(&array->mem));
/* And finally the array */
RESULT_GUARD_POSIX(s2n_free_object((uint8_t **) parray, sizeof(struct s2n_array)));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_array_free(struct s2n_array *array)
{
RESULT_ENSURE_REF(array);
return s2n_array_free_p(&array);
}
|