1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "utils/s2n_safety.h"
#include <stdint.h>
#include <stdio.h>
#include "utils/s2n_annotations.h"
/**
* Given arrays "a" and "b" of length "len", determine whether they
* hold equal contents.
*
* The execution time of this function is independent of the values
* stored in the arrays.
*
* Timing may depend on the length of the arrays, and on the location
* of the arrays in memory (e.g. if a buffer has been paged out, this
* will affect the timing of this function).
*
* Returns:
* Whether all bytes in arrays "a" and "b" are identical
*/
bool s2n_constant_time_equals(const uint8_t *a, const uint8_t *b, const uint32_t len)
{
S2N_PUBLIC_INPUT(a);
S2N_PUBLIC_INPUT(b);
S2N_PUBLIC_INPUT(len);
/* if len is 0, they're always going to be equal */
if (len == 0) {
return true;
}
/* check if a and b are readable - if so, allow them to increment their pointer */
uint8_t a_inc = S2N_MEM_IS_READABLE(a, len) ? 1 : 0;
uint8_t b_inc = S2N_MEM_IS_READABLE(b, len) ? 1 : 0;
/* reserve a stand-in pointer to replace NULL pointers */
static uint8_t standin = 0;
/* if the pointers can increment their values, then use the
* original value; otherwise use the stand-in */
const uint8_t *a_ptr = a_inc ? a : &standin;
const uint8_t *b_ptr = b_inc ? b : &standin;
/* start by assuming they are equal only if both increment their pointer */
uint8_t xor = !((a_inc == 1) & (b_inc == 1));
/* iterate over each byte in the slices */
for (size_t i = 0; i < len; i++) {
/* Invariants must hold for each execution of the loop
* and at loop exit, hence the <= */
S2N_INVARIANT(i <= len);
/* mix the current cursor values in to the result */
xor |= *a_ptr ^ *b_ptr;
/* increment the pointers by their "inc" values */
a_ptr += a_inc;
b_ptr += b_inc;
}
/* finally check to make sure xor is still 0 */
return (xor == 0);
}
/**
* Given arrays "dest" and "src" of length "len", conditionally copy "src" to "dest"
* The execution time of this function is independent of the values
* stored in the arrays, and of whether the copy occurs.
*
* Timing may depend on the length of the arrays, and on the location
* of the arrays in memory (e.g. if a buffer has been paged out, this
* will affect the timing of this function).
*
*/
int s2n_constant_time_copy_or_dont(uint8_t *dest, const uint8_t *src, uint32_t len, uint8_t dont)
{
S2N_PUBLIC_INPUT(dest);
S2N_PUBLIC_INPUT(src);
S2N_PUBLIC_INPUT(len);
uint8_t mask = (((0xFFFF & dont) - 1) >> 8) & 0xFF;
/* dont = 0 : mask = 0xff */
/* dont > 0 : mask = 0x00 */
for (size_t i = 0; i < len; i++) {
uint8_t old = dest[i];
uint8_t diff = (old ^ src[i]) & mask;
dest[i] = old ^ diff;
}
return 0;
}
/* If src contains valid PKCS#1 v1.5 padding of exactly expectlen bytes, decode
* it into dst, otherwise leave dst alone. Execution time is independent of the
* content of src, but may depend on srclen/expectlen.
*
* Normally, one would fill dst with random bytes before calling this function.
*/
int s2n_constant_time_pkcs1_unpad_or_dont(uint8_t *dst, const uint8_t *src, uint32_t srclen, uint32_t expectlen)
{
S2N_PUBLIC_INPUT(dst);
S2N_PUBLIC_INPUT(src);
S2N_PUBLIC_INPUT(srclen);
S2N_PUBLIC_INPUT(expectlen);
/* Before doing anything else, some basic sanity checks on input lengths */
if (srclen < expectlen + 3) {
/* Not enough room for PKCS#1v1.5 padding, so treat it as bad padding */
return 0;
}
/* First, determine (in constant time) whether the padding is valid.
* If the padding is valid we expect that:
* Bytes 0 and 1 will equal 0x00 and 0x02
* Bytes (srclen-expectlen-1) will be zero
* Bytes 2 through (srclen-expectlen-1) will be nonzero
*/
uint8_t dont_copy = 0;
const uint8_t *start_of_data = src + srclen - expectlen;
dont_copy |= src[0] ^ 0x00;
dont_copy |= src[1] ^ 0x02;
dont_copy |= *(start_of_data - 1) ^ 0x00;
for (size_t i = 2; i < srclen - expectlen - 1; i++) {
/* Note! We avoid using logical NOT (!) here; while in practice
* many compilers will use constant-time sequences for this operator,
* at least on x86 (e.g. cmp -> setcc, or vectorized pcmpeq), this is
* not guaranteed to hold, and some architectures might not have a
* convenient mechanism for generating a branchless logical not. */
uint8_t mask = (((0xFFFF & src[i]) - 1) >> 8) & 0xFF;
/* src[i] = 0 : mask = 0xff */
/* src[i] > 0 : mask = 0x00 */
dont_copy |= mask;
}
s2n_constant_time_copy_or_dont(dst, start_of_data, expectlen, dont_copy);
return 0;
}
static bool s2n_in_unit_test_value = false;
static bool s2n_in_integ_test_value = false;
int s2n_in_unit_test_set(bool is_unit)
{
s2n_in_unit_test_value = is_unit;
return S2N_SUCCESS;
}
int s2n_in_integ_test_set(bool is_integ)
{
s2n_in_integ_test_value = is_integ;
return S2N_SUCCESS;
}
bool s2n_in_unit_test()
{
return s2n_in_unit_test_value;
}
bool s2n_in_test()
{
return s2n_in_unit_test_value || s2n_in_integ_test_value;
}
int s2n_align_to(uint32_t initial, uint32_t alignment, uint32_t *out)
{
POSIX_ENSURE_REF(out);
POSIX_ENSURE(alignment != 0, S2N_ERR_SAFETY);
if (initial == 0) {
*out = 0;
return S2N_SUCCESS;
}
const uint64_t i = initial;
const uint64_t a = alignment;
const uint64_t result = a * (((i - 1) / a) + 1);
POSIX_ENSURE(result <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
*out = (uint32_t) result;
return S2N_SUCCESS;
}
int s2n_mul_overflow(uint32_t a, uint32_t b, uint32_t *out)
{
POSIX_ENSURE_REF(out);
const uint64_t result = ((uint64_t) a) * ((uint64_t) b);
POSIX_ENSURE(result <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
*out = (uint32_t) result;
return S2N_SUCCESS;
}
int s2n_add_overflow(uint32_t a, uint32_t b, uint32_t *out)
{
POSIX_ENSURE_REF(out);
uint64_t result = ((uint64_t) a) + ((uint64_t) b);
POSIX_ENSURE(result <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
*out = (uint32_t) result;
return S2N_SUCCESS;
}
int s2n_sub_overflow(uint32_t a, uint32_t b, uint32_t *out)
{
POSIX_ENSURE_REF(out);
POSIX_ENSURE(a >= b, S2N_ERR_INTEGER_OVERFLOW);
*out = a - b;
return S2N_SUCCESS;
}
|